
FluxFlux & & ReactReact
Web Application Development

Mark Repka

Topics Covered
• Introduction to Web Development

 Get to know some of the basic terms and technologies for general web software

• Flux
 An architecture for building client-side web applications

• React
 A JavaScript library for building user interfaces

• Closing notes
 Main things to remember

• Live Demo
• Questions?





Introduction to Web Development
• HyperText Markup Language (HTML)

 The standard markup language used to create web pages
 Consists of tags enclosed in angle brackets: <html>something</html>

•

• Cascading Style Sheets (CSS)
 The standard style sheet language used for describing the look and formatting of a

document written in a markup language, usually HTML.
 Uses a JSON-like structure to define classes and attributes for each HTML tag

•

• JavaScript (JS)
 Also known as ECMAScript
 Programming language of HTML and the Web
 Enables many more dynamic features of websites and web applications

•

FluxFlux
An architecture for building
client-side web applications

Flux Overview
• NOT a code library.

 This is just a design pattern

• Flux applications have three major
parts

 Dispatcher
 Stores
 Views (React Components)

• Structure and Data Flow
 Unidirectional data flow is central to

the Flux pattern
 The dispatcher, stores and views are

independent nodes with distinct
inputs and outputs

• Designed by Facebook and Instagram
• Provided as Open Source software

Data in a Flux application flows in a single direction:

The views may cause a new action response to
user input

Flux: Dispatcher
• The dispatcher is the central hub that manages all

data flow in a Flux application
• Has no real intelligence of its own

 It is a simple mechanism for distributing the actions
to the stores

• Each store registers itself and provides a callback
• All stores in the application receive the action via

the callbacks and can choose to act on them

Facebook, the creators of Flux, provide code for an
example Dispatcher to get started. This is seen in the
require(‘flux’).Dispatcher statement in the code to the
right.

Flux: Stores
• Stores contain the application state and

logic
 Similar to the model and controller in a

traditional MVC application

• Registers itself with the dispatcher and
provides it with a callback

• Contains a switch statement that can
decide what to do with various actions
that are dispatched by the Dispatcher

• Emits events to any listening Views telling
them to update their internal state

•

•

Flux: Views
• Flux was designed to pair well with the React

library which provides the UI side of your web
application

• When an action is captured by the store an event is
emitted to any view that is listening to that store.

• The view calls its own setState() or forceUpdate()
methods to update accordingly

 More on this in the React section next…

•

•

React

ReactReact
A JavaScript library for
building user interfaces

React Overview
• Just the User Interface

 Handles the V in the MVC design
pattern

• Simple Components
 Each react component handles one thing

• Usually written in JSX format
 Allows for XML/HTML-like syntax

directly
in the JavaScript code

• Translates directly into JavaScript
 Can be run directly in a standard web

browser with no additional libraries
required

• Designed by Facebook and Instagram
 Powers the UI of both of these websites

• Provided as Open Source software

• JSX is a JavaScript syntax extension that looks similar to XML/HTML

• Offers a concise and familiar syntax for defining components with optional
attributes and state

• It's more familiar for casual developers such as designers

•

Each React component is displayed through its render
function. This function returns some JSX that defines
how the component will display on the page.

React: Intro to JSX

React: Intro to JSX
• This Render function and some helper JavaScript variables lets us do some

really useful things!
• Dynamically creating a number of React components from values in a

JavaScript array
•

•

•

• More complex React components can have some state information that helps
them decide how they should render and display.

 This could include data like our little example array from before

• Some initial state can be defined in a component by overriding the
getInitialState() function

•

•

•

React: Component State

• If the state changes it will trigger a call to the render method so the
component can be updated

• In this simple example, state is just a single integer value called
‘someNumber’ which holds the number of clicks

•

•

•

Web Browser View

React: Component State

React: Component Lifecycle
Components have three main parts of their lifecycle
• Mounting: A component is being inserted into the

DOM
 getInitialState() is invoked before a component is

mounted
 componentWillMount() is invoked immediately

before mounting occurs
 componentDidMount() is invoked immediately after

mounting occurs

• Updating: A component is being re-rendered to
determine if the DOM should be updated

 shouldComponentUpdate() is invoked when a
component decides whether any changes warrant
an update to the DOM

• Unmounting: A component is being removed
from the DOM

 componentWillUnmount() is invoked immediately
before a component is unmounted and destroyed.
Cleanup should go here

• One of the most important things in any application, web or otherwise, is
performance. React has some very interesting features to help improve its
performance over other popular web frameworks.

• The Document Object Model (DOM)
 Structured representation of a document - in this case our web page
 A tree structure of nodes and objects that each can have different properties and

methods

Interacting with this DOM ourselves is slow and tricky to handle correctly.
React removes this difficulty of dealing directly with the webpage DOM by
introducing the idea of a Virtual DOM

React: Virtual DOM

Whenever you call setState() on a component, React will mark it as dirty. At
the end of the event loop, when all of the render methods have cascaded
through, React looks at all the dirty components and compares the result of
the new state to the existing DOM and does a single calculated update.

http://calendar.perfplanet.com/2013/diff/
Facebook Software Engineer, Christopher Chedeau

This means that, per any number of updates in that event loop, there is exactly
one time when the DOM is being updated.

React: Virtual DOM

This method is great news for performance since we are usually only updating
nodes at the bottom of the tree, not at the top!

This means that changes are localized to where the user interacts and does
not normally involve updating the entire DOM each time.

http://calendar.perfplanet.com/2013/diff/
Facebook Software Engineer, Christopher Chedeau

React: Virtual DOM

When building an application with React there are some extra features
that make development even easier
• Localization with react-intl

 Open Source library provided by Yahoo
 Uses the standard ICU Message syntax
 Provides React Components format data and strings

•

• Animations
 React provides the ReactCSSTransitionGroup
 Supports basic CSS animations and transitions
 Wraps all of the components you are interested in animating
 Specified in CSS file by some name, referenced in code by that name

React: Helpful Addons

React: Animations
• The ReactCSSTransitionGroup addon allows for

CSS transitions and animations when a React
component enters or leaves the DOM

• Animations are then specified by name in the
CSS

Closing: Things to Remember
• React helps you create small simple components can be easily reused

throughout the application
• Components can be combined together to create more complex interfaces
• React will automatically manage all UI updates when your underlying data

changes
• Page markup and JavaScript behavior are defined together in the same file,

the JSX format, making code easy to read and follow
• Designed for performance with large complex web applications
• Cross browser support in Firefox, Chrome, IE8+, Safari, etc.
• Used by industry leaders such as Facebook, Instagram, Netflix, Codecademy
•

Live Demo!
Lets check out React and Flux in action…

Example Code and Resources
• https://github.com/repkam09/react-flux-test

 Contains all code shown in this presentation

• http://facebook.github.io/flux/
 The official documentation for Flux, provided by Facebook.

• https://facebook.github.io/react/
 The official documentation for React, provided by Facebook.

•

https://github.com/repkam09/react-flux-test
https://github.com/repkam09/react-flux-test
https://github.com/repkam09/react-flux-test
http://facebook.github.io/flux/
http://facebook.github.io/flux/
https://facebook.github.io/react/
https://facebook.github.io/react/

	Slide1
	Slide34
	Slide6
	Slide11
	Slide13
	Slide14
	Slide15
	Slide17
	Slide3
	Slide4
	Slide5
	Slide8
	Slide9
	Slide25
	Slide30
	Slide20
	Slide22
	Slide23
	Slide28
	Slide27
	Slide24
	Slide33
	Slide18

