
Filesystems
CC BY-SA 2015 Nate Levesque



What is a filesystem?
● How your operating system stores files and directories on disk

● Often provides some useful features in addition to just deciding how data gets 

organized on your hard drive

○ Error correction/data recovery

○ RAID

○ Snapshotting

○ Compression

○ Encryption

○ Permissions

○ Deduplication

○ ...



Some common filesystems
● Linux

○ ZFS

○ EXT4/3/2

○ BTRFS

○ ...others

● Mac OS X

○ HFS/HFS+

● Windows

○ exFAT/NTFS

○ FAT16/32



Some common filesystems
● Linux

○ ZFS

○ EXT4/3/2

○ BTRFS

○ ...others

● Mac OS X

○ HFS/HFS+

● Windows

○ exFAT/NTFS

○ FAT16/32



As a sidenote...
● I won’t cover the features of every filesystem in depth. Filesystems have more 

features and limitations than are covered here which may or may not be a 

consideration for you.



Considerations for Choosing a Filesystem
● How large are the files you’ll store? (FAT32 only allows up to 4Gb files)

● How big will it be? (NTFS, and EXT4 support only up to ~1 Exabyte)

○ An exabyte is larger than most of us will need. If you run a cloud service, 1 Exabyte may be too 

small.

● How long are typical filenames? (NTFS only allows up to 255 characters)

○ When does this matter? Log filenames, version control filenames, etc

● Does it need to span multiple storage devices or provide redundancy?

○ We’re mainly considering software RAID in this presentation

● Do you want to be able to roll back to a previous version of your data?

● Are you using a solid state drive?

● What operating systems need to read your data? (Windows will only read MS 

filesystems, while Linux and Mac can read many more)

● Which one is nicer to work with? (ZFS is designed to be user friendly and easy)



Which ones can you install Linux on?
● Depending how much magic you want to do, most of them

○ NTFS is POSIX compliant and Linux can technically be installed on it. Probably don’t.

● Linux has wide support for a lot of different filesystems

● Linux doesn’t ship with support for all filesystems out of the box

○ You can usually use them, but with a little extra work



Common Filesystem Features



Journaling
● Used to make filesystems more reliable in the case of a power failure by making 

corruption less likely - easier to come back online

● Keeps track of changes to data before it’s written to disk

○ When you “save” to disk, things are not written right away because disks are so slow

● There are a few different ways filesystems can do journaling

○ Keep track of metadata (data about the data) to improve performance, but not reliability

○ Keep track of data to improve reliability

○ Keep track of both

● This can be a downside if you’re on a solid state drive because it has more writes



Error Correction/Data Recovery
● Error Correction is detecting and fixing errors in the stored data. Data Recovery is 

recovering deleted or corrupted data

○ No, these are not the same but they are similar

● These are often referred to as “Filesystem Checks”, “Filesystem Repair”, or “Disk 

Checks”

● There are various ways of handling this, depending on your filesystem

● In Linux, this is often done using a utility called “fsck” which can repair many 

filesystems



RAID
● “Redundant Array of (Inexpensive|Independent) Disks”

● Allows you to use multiple hard drives

○ For better speed (worse for data recovery, usually)

○ For better data integrity (worse for speed, usually)

● All “big” servers use some form of RAID

● You generally will not use RAID on your own system, but you can

● There is software RAID (what we’ll look at here) and hardware RAID (which is 

somewhat faster, less flexible, and more expensive)



Snapshotting
● Ever unzipped a lot of files into a folder you didn’t want to put them in? This lets 

you roll back to before that happened

● Allows you to take a “snapshot” of what your filesystem looked like at a particular 

time

● You can often browse the contents of your snapshots to recover data

● You can roll back your files to an earlier point in time



Compression
● Compress your data so it takes up less space so you can make more of your hard 

drive space

● Often (counterintuitively to most people) can actually improve system 

performance

○ Hard drives are incredibly slow from an engineering standpoint, so the less data you have to read or 

write, the better

○ This depends a little on processor speed. If your CPU is slow, compression is slow.

● If you run Windows 10, compression is likely enabled for you out of the box



Encryption
● Encrypt the contents of your storage so they can only be accessed with your key

○ If you attach an unencrypted drive to any system, it can read it assuming it has the drivers for that 

filesystem

● Makes data recovery much harder in many cases

○ Losing your encryption key generally means your data is gone

● Can be done on a filesystem level or on a file level depending on your preferences 

and system

○ Windows typically uses Bitlocker

○ Everyone can use TrueCrypt (which can also encrypt entire filesystems)

○ Linux has several technologies



Permissions
● If you use Linux, you’re likely familiar with permissions

○ Restrict which system users can read, write, and run files

○ Keep track of who owns what, no matter where it is

● Believe it or not, Windows (on NTFS or exFAT) also supports permissions, but 

Windows doesn’t make them as readily available for you to change

○ Linux can observe these with a little set up



The EXT Family



Basic Information about EXT
● Available on nearly every Linux distribution out of the box

○ Can be used with Windows using extra drivers, but with many limitations and missing features. 

This frequently is broken by windows updates.

● Current generation is EXT4 (EXT3 is still seen in the wild, and EXT2 is 

considered very obsolete)

● Considered to be a mature, stable filesystem

● Allows a filesystem to be upgraded to the new generations



EXT4 Features
● Journaling for better reliability

● Encryption

● Permissions (POSIX)

● Backwards compatible

● Repairable using the FSCK utility



EXT4 Limitations
● Maximum size: 1EiB

● Maximum file size (using defaults): 16Tb

● No compression supported

● Maximum number of files: 4 billion

● All characters except “/”, NUL”, “.” and “..” as filenames

● No Deduplication

● Does not support “Secure Deletion”

○ Overwriting files on deletion

● No Snapshotting



Basic Commands
● Check/Repair a filesystem: fsck /dev/sdb1

● Create a filesystem: mkfs.ext4 /dev/sdb1



BTRFS



BTRFS Basic Information
● Relatively new (introduced in the past few years)

● Not universally considered “stable”

○ Whether you consider it stable is up to you. For most purposes it is but for big data and high 

reliability it may not fit the bill.

● EXT4 can be “upgraded” to BTRFS

● BTRFS is a copy on write filesystem

○ Data is not written to the original file, it is written elsewhere and the pointers are updated to point 

to the new location



BTRFS Features
● Copy on write for better reliability (not journaling)

● Permissions (POSIX)

● Compression

● RAID

● Snapshotting

● Repairable with the FSCK utility

● Subvolumes



BTRFS Limitations
● Does not support encryption (it’s planned)

● Does not support deduplication (it’s in development)

● Maximum size: 16Eib

● Maximum filesize: 16Eib

● Any character in filenames except “/”, “..”, NUL, and a single “.” as the filename



Basic BTRFS Commands
● Create a filesystem: mkfs.btrfs /device/path

● Create across multiple disks: mkfs.btrfs /dev/1 /dev/2 …

● Create a RAID10 array: mkfs.btrfs -d raid10 -m raid10 /dev/1 /dev/2 …
○ RAID has requirements for the number of disks in an array

● Convert from ext3/4: btrfs-convert /device/path

● Manage a subvolume: btrfs subvolume (create|delete) /path/to/subvolume

● Create a snapshot: btrfs snapshot /path/to/subv1 /btrfs/subv1/<name>

● Roll back to a snapshot:

○ Unmount the subvolume

○ Move the subvolume into the main filesystem



ZFS



ZFS Basic Information
● ZFS is super cool, so this doesn’t do it justice

● Can be used under other filesystems with the same featureset

● Copy on write (not journaling)

● Designed to be easy to manage

● Designed for massive-data



ZFS Features 
● Deduplication

● Compression

● Encryption

● Snapshotting

● RAID

● Permissions (POSIX)

● Can send and receive filesystems and filesystem changes

● Will not allow you to read corrupted data (either you can read the correct data, or 

nothing at all)



ZFS Limitations
● Maximum size: 256 zebibytes (yes. zebibytes). The amount of energy required to 

flip a bit in a filesystem that large would do bad things to the universe.

● Maximum filesize 16 EiB

● Filling a ZFS filesystem to over 80% full will make it extremely slow

● ZFS requires a lot of memory

● Not standard in most distributions and requires some extra magic to use

● Caching can be a problem without error correcting ram



ZFS Commands
● Create a storage pool: zpool create <name> <disk(s)>

● Create a RAID array: zpool create <name> <raid> <disk(s)>
○ RAID imposes disk requirements

● Create a subvolume: zfs create <name>/<subvolume>
○ You can format subvolumes to other filesystem types, including NTFS and FAT

● Create a snapshot: zfs snapshot <name>/<subvolume>@<time>

● Roll back to a snapshot: zfs rollback <name>/<subvolume>@<time>



Closing Thoughts



Which one is best?
● Whichever one is easiest for you to manage and whose limitations won’t mess you 

up

● I use BTRFS on my laptop. My server runs ZFS for the storage pool and EXT4 for 

the operating system drive

● EXT4 is the default on most distros

○ Canonical (Ubuntu) is now working on making ZFS the default



There are more options
● ReiserFS, XFS, and others

● Installing Linux on a “non-Linux” filesystem is usually possible but frequently 

painful

● Using a filesystem with permissions on an external drive can be painful, although 

you can do it


