Filesystems

CC BY-SA 2015 Nate Levesque

What is a filesystem?

e How your operating system stores files and directories on disk
e Often provides some useful features in addition to just deciding how data gets

organized on your hard drive
o Error correction/data recovery

RAID

Snapshotting

Compression

Encryption

Permissions

Deduplication

O O O O O O O

Some common filesystems

e Linux
o ZFS
o EXT4/3/2
o BTRFS
o ..others

e MacOS X
o HFS/HFS+
e Windows

o exFAT/NTEFS
o FAT16/32

Some common filesystems

e Linux
o ZFS
o EXT4/3/2
o BTRFS
o .others
e MacOSX
o HFS/HFS+

e Windows

o exFAT/NTEFS
o FAT16/32

As a sidenote...

e Jwon’t cover the features of every filesystem in depth. Filesystems have more
features and limitations than are covered here which may or may not be a
consideration for you.

Considerations for Choosing a Filesystem

e How large are the files you’ll store? (FAT32 only allows up to 4Gb files)
e How big will it be? (NTFS, and EXT4 support only up to ~1 Exabyte)

o An exabyte is larger than most of us will need. If you run a cloud service, 1 Exabyte may be too

small.

e How long are typical filenames? (NTFS only allows up to 255 characters)

o When does this matter? Log filenames, version control filenames, etc

e Does it need to span multiple storage devices or provide redundancy?

o We’re mainly considering software RAID in this presentation
e Do you want to be able to roll back to a previous version of your data?
e Are you using a solid state drive?
e What operating systems need to read your data? (Windows will only read MS
filesystems, while Linux and Mac can read many more)
e Which one is nicer to work with? (ZFS is designed to be user friendly and easy)

Which ones can you install Linux on?

e Depending how much magic you want to do, most of them
o NTEFS is POSIX compliant and Linux can technically be installed on it. Probably don’t.

e Linux has wide support for a lot of different filesystems
e Linux doesn’t ship with support for all filesystems out of the box

o You can usually use them, but with a little extra work

Common Filesystem Features

Journaling

Used to make filesystems more reliable in the case of a power failure by making
corruption less likely - easier to come back online
Keeps track of changes to data before it’s written to disk

o When you “save” to disk, things are not written right away because disks are so slow

There are a few different ways filesystems can do journaling

o Keep track of metadata (data about the data) to improve performance, but not reliability
o Keep track of data to improve reliability
o Keep track of both

This can be a downside if you’re on a solid state drive because it has more writes

Error Correction/Data Recovery

e Error Correction is detecting and fixing errors in the stored data. Data Recovery is
recovering deleted or corrupted data

o No, these are not the same but they are similar

e These are often referred to as “Filesystem Checks”, “Filesystem Repair”, or “Disk
Checks”

e There are various ways of handling this, depending on your filesystem

e In Linux, this is often done using a utility called “fsck” which can repair many
filesystems

RAID

e “Redundant Array of (Inexpensive|Independent) Disks”
e Allows you to use multiple hard drives

o For better speed (worse for data recovery, usually)
o For better data integrity (worse for speed, usually)

e All “big” servers use some form of RAID
e You generally will not use RAID on your own system, but you can
e There is software RAID (what we’ll look at here) and hardware RAID (which is

somewhat faster, less flexible, and more expensive)

Snapshotting

e Ever unzipped a lot of files into a folder you didn’t want to put them in? This lets
you roll back to before that happened

e Allows you to take a “snapshot” of what your filesystem looked like at a particular
time

e You can often browse the contents of your snapshots to recover data

e You can roll back your files to an earlier point in time

Compression

Compress your data so it takes up less space so you can make more of your hard
drive space

Often (counterintuitively to most people) can actually improve system
performance

o Hard drives are incredibly slow from an engineering standpoint, so the less data you have to read or

write, the better
o This depends a little on processor speed. If your CPU is slow, compression is slow.

If you run Windows 10, compression is likely enabled for you out of the box

Encryption

e Encrypt the contents of your storage so they can only be accessed with your key

o If you attach an unencrypted drive to any system, it can read it assuming it has the drivers for that
filesystem
e Makes data recovery much harder in many cases

o Losing your encryption key generally means your data is gone

e (Can be done on a filesystem level or on a file level depending on your preferences

and system
o Windows typically uses Bitlocker
o Everyone can use TrueCrypt (which can also encrypt entire filesystems)
o Linux has several technologies

Permissions

e If you use Linux, you're likely familiar with permissions
o Restrict which system users can read, write, and run files
o Keep track of who owns what, no matter where it is

e Believe it or not, Windows (on NTFS or exFAT) also supports permissions, but
Windows doesn’t make them as readily available for you to change

o Linux can observe these with a little set up

The EXT Family

Basic Information about EXT

e Available on nearly every Linux distribution out of the box

o Can be used with Windows using extra drivers, but with many limitations and missing features.

This frequently is broken by windows updates.
e Current generation is EXT4 (EXTS3 is still seen in the wild, and EXT?2 is
considered very obsolete)
e Considered to be a mature, stable filesystem
e Allows a filesystem to be upgraded to the new generations

EXT4 Features

Journaling for better reliability
Encryption

Permissions (POSIX)

Backwards compatible
Repairable using the FSCK utility

EXT4 Limitations

Maximum size: 1EiB

Maximum file size (using defaults): 16Tb

No compression supported

Maximum number of files: 4 billion

All characters except “/”, NUL”, “.” and “.” as filenames
No Deduplication

Does not support “Secure Deletion”

o Overwriting files on deletion

e No Snapshotting

Basic Commands

e Check/Repair a filesystem: fsck /dev/sdb1
e C(reate a filesystem: mkfs.ext4 /dev/sdb1

BTRFS

BTRFS Basic Information

e Relatively new (introduced in the past few years)
e Not universally considered “stable”

o Whether you consider it stable is up to you. For most purposes it is but for big data and high
reliability it may not fit the bill.

e EXT4 can be “upgraded” to BTRFS
e BTRFS is a copy on write filesystem

o Data is not written to the original file, it is written elsewhere and the pointers are updated to point

to the new location

BTRFS Features

Copy on write for better reliability (not journaling)
Permissions (POSIX)

Compression

RAID

Snapshotting

Repairable with the FSCK utility

Subvolumes

BTRFS Limitations

Does not support encryption (it’s planned)

Does not support deduplication (it’s in development)
Maximum size: 16Eib

Maximum filesize: 16Eib

«€ »

Any character in filenames except “/”, “.”, NUL, and a single “.” as the filename

Basic BTRFS Commands

e C(reate a filesystem: mkfs.btrfs /device/path
Create across multiple disks: mkfs.btrfs /dev/1 /dev/2 ..
Create a RAIDI0 array: mkfs.btrfs -d raid10 -m raid10 /dev/1 /dev/2 ..

o RAID has requirements for the number of disks in an array

Convert from ext3/4: btrfs-convert /device/path
Manage a subvolume: btrfs subvolume (create|delete) /path/to/subvolume
Create a snapshot: btrfs snapshot /path/to/subvl /btrfs/subvl/<name>

Roll back to a snapshot:
o Unmount the subvolume
o Move the subvolume into the main filesystem

kS

ZFS Basic Information

ZFS is super cool, so this doesn’t do it justice

Can be used under other filesystems with the same featureset
Copy on write (not journaling)

Designed to be easy to manage

Designed for massive-data

LS Features

Deduplication
Compression
Encryption
Snapshotting

RAID

Permissions (POSIX)

Can send and receive filesystems and filesystem changes

Will not allow you to read corrupted data (either you can read the correct data, or
nothing at all)

ZFS Limitations

e Maximum size: 256 zebibytes (yes. zebibytes). The amount of energy required to
flip a bit in a filesystem that large would do bad things to the universe.
Maximum filesize 16 EiB

Filling a ZFS filesystem to over 80% full will make it extremely slow

ZFS requires a lot of memory

Not standard in most distributions and requires some extra magic to use

Caching can be a problem without error correcting ram

ZFS Commands

e C(reate a storage pool: zpool create <name> <disk(s)>
® C(reate a RAID array: zpool create <name> <raid> <disk(s)>
o RAID imposes disk requirements

e C(reate a subvolume: zfs create <name>/<subvolume>
o You can format subvolumes to other filesystem types, including NTFS and FAT

e Create a snapshot: zfs snapshot <name>/<subvolume>@<time>
e Roll back to a snapshot: zfs rollback <name>/<subvolume>@<time>

Closing Thoughts

Which one is best?

e Whichever one is easiest for you to manage and whose limitations won’t mess you
B

e] use BTRFS on my laptop. My server runs ZFS for the storage pool and EXT4 for
the operating system drive

e EXT4 is the default on most distros

o Canonical (Ubuntu) is now working on making ZFS the default

There are more options

e ReiserFS, XFS, and others
e Installing Linux on a “non-Linux” filesystem is usually possible but frequently

painful
e Using a filesystem with permissions on an external drive can be painful, although

you can do it

