How Linux is Organized

Or, "Where do I find things?"

Terminology

• Mount: making something and its contents available on your system

- Mountpoint: Where you mount something
 - Linux doesn't use drive letters. You can mount things anywhere you want.

Linux File System Hierarchy v2.0

66 /33

• Where your system's files start

Most Unix-like systems have a similar structure

• Other drives or locations are mounted somewhere under "/"

A typical "/"

```
→ls -l /
total 36
                           7 Sep 30 15:17 bin -> usr/bin
            1 root root
LLMXLMXLMX
            4 root root 4096 Dec 31 1969 boot
drwxr-xr-x
                          18 Jan 29
                                     2015 btrfs
drwxr-xr-x
            1 root root
drwxr-xr-x
           20 root root 3140 Mar 17 20:39 dev
           1 root root 3398 Mar 14 17:32 etc
drwxr-xr-x
drwxr-xr-x
           1 root root
                          14 Oct 24 16:01 home
            1 root root
                           7 Sep 30 15:17 lib -> usr/lib
LLMXLMXLMX
            1 root root
                           7 Sep 30 15:17 lib64 -> usr/lib
LLMXLMXLMX
drwxr-xr-x
           1 root root
                           0 Sep 7 2015 mnt
drwxr-xr-x
           1 root root 162 Feb 12 12:30 opt
dr-xr-xr-x 284 root root
                           0 Mar 9 14:51 proc
                         560 Feb 25 14:03 root
drwxr-x---
            1 root root
drwxr-xr-x
           23 root root
                         580 Mar 18 07:47 run
LLMXLMXLMX
           1 root root
                           7 Sep 30 15:17 sbin -> usr/bin
drwxr-xr-x
           1 root root
                          14 Oct 25 2014 srv
           13 root root
                           0 Mar
                                 9 14:51 sys
dr-xr-xr-x
           27 root root 1260 Mar 17 22:54
drwxrwxrwt
drwxr-xr-x
            1 root root 112 Nov 7 13:43 usr
drwxr-xr-x
            1 root root 128 Oct 21 14:38 var
```

You might have noticed some things are symlinks

- While the general structure of the filesystem is pretty consistent between distros, some move things around a little
 - Some locations exist for historic reasons that don't really apply anymore

 ArchLinux combined some of the directories to make things cleaner, but symlinks are there so everything still works

/bin

- Application binaries available to everyone on the system
 - This does not imply users have access to the things these applications can do
 - If you're more familiar with Windows, this is kind of like a less nested C:\ProgramFiles

Most applications you run have their main entry point in here

 Mostly managed by your package manager, but you can manually place scripts and binaries here

/boot

- Your bootloader files
 - This is what handles starting Linux and starting your init system

- Linux initramfs images
 - The image of your Linux kernel that gets dumped into RAM at boot

Possibly, an EFI directory which is your UEFI stuff

/dev

- Your devices!
 - Yes, this means you can access much of your hardware just like files

Cool things in /dev

- /dev/null: a black hole. You can dump anything into /dev/null if you want it to disappear
 - You'll often see this in scripts that do something like `echo foo > /dev/null`
 - Many applications dump things here

- /dev/shm: your RAM. You can store things here in memory.
 - RAM is not persistent storage, it disappears when you shut down or reboot

• /dev/urandom: get random numbers!

Naming conventions in /dev

- Modern hard drives are usually /dev/sd{a..z}
 - If you have a LOT of drives, it'll add letters, e.g. /dev/sdaa
 - If you're on a server, you can find which drive is which by doing "cat /dev/sdx > /dev/null" to make
 its light flash
 - Partitions on drives are numbered, e.g. /dev/sd{a..z}{1..}
 - You normally don't mount a drive, you mount a partition

SD cards are usually /dev/mmcblk*

/etc

- Configuration files
 - If you write an application with multiple config files, please use a subdirectory
 - Normally just plaintext files

- Init scripts for starting and stopping applications
 - /etc/init.d for sysvinit systems (legacy)
 - /etc/systemd/system for modern systemd-based systems

Interesting things in /etc

- /etc/passwd
 - Where your user configurations live (username, userid, shell, home directory, etc but NOT password)
 - Anyone can look in this file unless you modify its permissions
- /etc/shadow
 - User credentials. Only root can access this file.
- /etc/issue
 - What distro and version you're using
- /etc/fstab
 - O What additional mounts you want set up when you boot

/home

- User files!
 - Yours usually live in /home/<your username>
 - Applications sometimes create a user for themselves and store things here
 - You can configure different locations for user files on a per-user basis

- Sometimes this is mounted from somewhere else
 - On my server I store user files in my storage pool, /tank/home which is mounted to /home

/lib and /lib64

- Shared libraries for applications, additional things they use
 - Things like encryption, SSL certificates, and others
 - Windows would call these DLLs

• Managed by your package manager most of the time, you usually won't deal with these yourself

/mnt

Not used automatically by most distros

- This is the standard place for creating temporary filesystems
 - o Usually if your system auto-mounts things it will not be here

/opt

Additional applications that are not core to the system running

• Not many applications place things here anymore, they use the normal /bin, /lib, /usr/bin, and /usr/lib.

- Applications that will places things here include
 - o Telegram
 - Android Studio
 - Adobe Reader
 - ...And others

/opt

- Some embedded systems make heavy use of /opt
 - For example, if you have a jailbroken Kindle Keyboard, the package manager you can install will use /opt for packages

/proc

• Virtual filesystem (doesn't really exist or take up disk space)

Only mounted when your system is running

- Contains your running programs (slight simplification)
 - You can get a lot of information about things your system is running from here

• You can modify things in /proc to tune your system

/proc

- You can do a lot of advanced stuff in /proc that we won't get into here
 - It's super magical
 - Intimate knowledge of what's in /proc isn't required for being proficient at Linux's internals

- One useful thing: Check what binary belongs to a process ID
 - o `readlink -f /proc/cess id>/exe`
 - To see what shell you're currently running, use \$\$ for the process id

/root

- This is the home directory for the superuser (root)
 - This is configurable, but leaving it here is best

Only root has access to this directory

• Don't mount this somewhere else unless you're absolutely sure, because things might get weird if you need to log in as root and your mount didn't come up

/run

- Runtime information about your system
 - Such as the last time you ran sudo so sudo knows if it should ask for a password again, logged in users, and daemons

/run/mount/<user> is often where auto-mounted drives are mounted

/sbin

- "Essential" system binaries that only root has permission to use
 - Things like fsck (partition check and repair)

- No longer used on some distros
 - o Arch makes this a symlink to /bin

/srv

- Not used on all distros
 - O Some distros use /var, e.g. apache on debian uses /var/www

- Data used by system services such as webservers
 - /srv/http files and scripts served by the webserver
 - /srv/gogs Go Git Server files
 - o ..

/sys

• Similar idea to /proc, but for devices instead of processes

Device and driver information and tuning

/tmp

• System temporary files. Cleared at every boot

Anyone can write here, but only the owner of a file can see it

- Used by users and applications for temporary storage
 - This can be a good place to keep your downloaded files if you download a lot of stuff you don't need to keep

/usr

- Other third party applications
- Kind of mirrors /
 - o /usr/etc
 - o /usr/bin
 - o /usr/lib
 - Some distros don't differentiate anymore

- Contains other things like icon packs and themes
 - o Usually in /usr/share

/var

- "Variable files"
 - Files that are expected to change continuously while the system is running

• Log files, mailboxes, cache files, lockfiles, etc

/media

- Mountpoint for removable things (like flash drives)
 - Once again, not really used anymore and doesn't always exist on distros

Other things you might see

- /btrfs
 - o BTRFS filesystem snapshots if / is on a BTRFS filesystem
- /tank
 - Default location for ZFS [sub]volumes
- /.zfs
 - o "Invisible" directory for ZFS snapshots and data, if / is on a ZFS filesystem
- /lost+found
 - Recovery directory for EXT filesystems if / is on an EXT filesystem

How do I...

...Have the application I built find its config files?

- Most applications search for their config files in the following order:
 - ~/.<app>
 - It may not always be appropriate for your application to look here
 - o /usr/etc/
 - o /etc

...Figure out what /dev node the drive I plugged in is?

• Run `dmesg` right after you connect it. You should be able to find log entries near the bottom that say it discovered drive /dev/...

...Install an icon pack?

• For just you: /home/.icons

• For everyone: /usr/share/icons

...Get a lot of zeroes?

- This is useful if you want to "zero out" (overwrite something with 0's) to destroy the partition table, file, or whatever
- /dev/zero is your source! `cat /dev/zero > /thing/to/zero/out`

...Manually mount a drive?

- Figure out what the device is
- Create a directory to mount it in
- Run `sudo mount /dev/your_device_partition /directory/to/put/it/in`

...Block a website?

- Edit /etc/hosts and add an entry that points the website to 127.0.0.1
 - There can be better ways of doing this
 - Windows' equivalent is C:\Windows\System32\drivers\etc\hosts

...Find a log file?

- Look in /var/log
 - Most are pretty self explanatory from there
 - Systemd does not use plaintext logs, you need to use the journalctl utility