
Setting up a LAMP server
Created by: Nate Levesque (Feb. 2016)

Updated by: Justin W. Flory (Oct. 2016)

CC-BY-SA 4.0

https://www.thenaterhood.com/
https://justinwflory.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

What is LAMP?

Duh.

Actually, we’re interested in...
● “Linux, Apache, MySQL, and PHP”

○ A standard web server setup

○ Not the only technology options!

Linux
● Pick any! Common choices are:

○ Debian

○ Ubuntu Server

○ RHEL / CentOS

○ Related (enterprise) distros

● Normally it’s wise to pick a distro that’s somewhat stable

○ You can run a web server even on Arch if you’re daring

Apache
● Very commonly used web server software

● Available in your package manager!

○ To enable the service if your installation doesn’t do it automatically, enable `httpd` or `apache`

depending on your distro

MySQL
● Database server

● Available in your package manager

○ Runs as a service, so you may need to enable it if your installation doesn’t

● Install PHPMyAdmin to manage your database with a web GUI

○ Requires you to know less SQL

MySQL - PHPMyAdmin

PHP
● Common web application programming language

○ We won’t discuss why it is or isn’t awful here

● Available in your package manager! (Seems like a trend...aren’t package managers

great?)

Setting up LAMP

http://www.wikihow.com/Build-a-Lamp

Initial Installation
● Install your distro’s Apache2, MySQL, and PHP packages

○ You may also need to install an apache-php or php-mysql package

○ Some distros provide a package called “LAMP” which installs these all for you in one shot.

Depending on your distro, there may be good reason not to use it.

● Enable Apache2 and MySQL

○ systemd based systems: systemctl enable httpd --now && systemctl enable mysql --now

Tell Apache about PHP
● Apache will not handle PHP scripts by default

● This process may vary slightly depending on your distro and particular versions of

Apache and PHP

Tell Apache about PHP
● Edit /etc/httpd/conf/httpd.conf

● Add “LoadModule php7_module modules/libphp7.so” under the line

“LoadModule dir_module modules/mod_dir.so”

● Add “Include conf/extra/php7_module.conf” in the “Include” list in the file

○ near the bottom, find the last line that starts with “Include” that’s not in a conditional

If you’re using PHP 7 like me...
● In that same file:

○ Comment out “LoadModule mpm_event_module modules/mod_mpm_event.so”

○ Uncomment “LoadModule mpm_prefork_module modules/mod_mpm_prefork.so”

Finally...
1. Restart Apache (or httpd, if that’s what your distro calls it)

2. Find the directory Apache will serve files from. Configurable, usually defaults to:

a. /srv/http/

b. /var/www/

3. Put a test file there named “test.php”

a. Put “<?php phpinfo(); ?>” in it

4. Visit http://localhost/test.php

a. Hopefully, that loads and you get a page with a bunch of PHP information

5. Delete the test file, leaving it up can be a security problem

http://localhost/test.php

Alternatives

LNMP
● Linux, Nginx, MySQL, and PHP

● Nginx is much lighter-weight, faster, and easier to configure than Apache

○ Frequently used in load balancing and proxy servers due to speed

○ Can do many of the same things, but is less powerful and is a younger project

Install Nginx
● Install nginx, php, and php-fpm

○ Start nginx and php-fpm

● Once started, visit http://localhost and you should see a simple “welcome to

nginx” page

http://localhost

Set up Nginx
● Edit /etc/nginx/nginx.conf. In the server{} block, add:

location ~ \.php$ {

root /usr/share/nginx/html # You can change this path!

fastcgi_pass unix:/run/php-fpm/php-fpm.sock

fastcgi_index index.php;

include fastcgi.conf;

}

● Restart nginx and php-fpm

Set up Nginx
● Create a file called test.php in your PHP root with the contents:

○ <?php phpinfo(); ?>

○ (If you followed the defaults on the previous slide, this will be /usr/share/nginx/html/test.php)

● Visit http://localhost/test.php

http://localhost/test.php

LAPP
● Linux, Apache, PostgreSQL, PHP

● PostgreSQL is an alternative database, regarded in some ways to be better

○ But, it doesn’t have shiny web UIs for management so you need to know some SQL

Or mix and match
● There are other options, depending on what you’re building

● You can develop web applications in any language and make Apache, Nginx, or

other web server software serve them

○ PHP may not be a good language to start with because it’s extremely easy to write awful, insecure

code and difficult to master

○ You can even use multiple languages for the same web application

● If you use a technology such as Rails (Ruby web framework), they may provide

you with a server

Other tips and tricks

Running on a large scale
● Usually, the web server and the database server are not on the same system

● Multiple web servers that serve requests, with a load balancer in front

○ Does what it implies; it decides which server to send traffic to so things don’t get overloaded

○ Often powered by Nginx!

● Frequently run in containers or virtual machines

○ Some companies even consider servers disposable and automatically wipe and rebuild them

regularly

Be conscious of security
● Set up your database correctly

○ A disturbing number of sites have their database(s) exposed and open

○ Use a good password and change the defaults

○ Don’t open your database to the Internet; only your webserver needs to talk to it

○ HASH (and salt) passwords, don’t keep them in plaintext or reversible encryption

● Don’t trust any data

○ HTML escape everything you send to the user with an existing library (don’t roll your own!)

○ Use prepared statements when talking to your database so users can’t run arbitrary SQL

● Don’t roll your own encryption

● Learn how to do things properly (this is not an exhaustive list of tips!)

Use HTTPS for Everything!
● Back in the old days of one year ago, verified SSL certs cost money and took a bit

of work to get

● LetsEncrypt / Certbot has changed all of this! Free SSL certs for everyone!

● There is no reason not to use HTTPS for all traffic these days.

○ Protect yourself and your users!

○ What a time to be alive!

http://ritlug.com/talks/2016-spring-letsencrypt.pdf
http://ritlug.com/talks/2016-spring-letsencrypt.pdf

Questions?
Comments?
Concerns?

