
 1 / 24

Package Management &
Cross-Distro Packages

 2 / 24

Package Managers
(I tried my best on accuracy, but don’t quote me)

pacman (PKGBUILD)

Arch Manjaro

dpkg/apt (.deb)

Debian Ubuntu
(and more)

yum/dnf/YaST/rpm (.rpm)
(Okay I got lazy with classifying here)

 3 / 24

What’s wrong
● Dependency hell

– Deleting libraries that packages didn’t say they
needed

● Bitrot: Packages leave behind cruft when
uninstalled

● Impossible for program developers to test for
– Which package manager, which versions, what

other differences
● Package managers update, developers can’t

 4 / 24

Alternatives?

● Option 1: Bundles: Author packages everything
needed to run together into one bundle

 5 / 24

Bundles
● Pros:

– Author can test and deploy all the libraries
they use

– Applications in a single file
– Automatic updates (Snap & Flatpak)

● Cons:
– Author must update and maintain all the

libraries they use
– Applications in a large file

 6 / 24

Basic mechanics

● Bundle as many dependencies as you want
● To run:

– Mount the archive
– Potentially sandbox it to the archive +

additional chosen directories
– Run the program based on those paths

● Might have their own dependencies and layers
– e.g. OSTree

 7 / 24

Snapcraft Flatpak AppImage

How to run
Install, use
priveleged daemon

Install, use
priveleged daemon

Run as any user.
Optional daemon

Supported by Canonical Red Hat (& Fedora
Project)

Community only

Repositories
Curated store
owned by Canonical
(hardcoded)

Multiple repositories,
Free to host own

No official
repositories

Bundling
 Single bundle with
sandbox metadata,
Base snaps now

OSTree Layers ala
Docker (package
management again!)

Single bundle

Sandboxing Always AppArmor Always Bubblewrap Must supply own

Automatic Updates Yes Yes No

Run without
desktop?

Yes No Yes

Endorsed by Linus
Torvalds No No Yes

Comparison of Bundles

(See https://github.com/AppImage/AppImageKit/wiki/Similar-projects for a
detailed if biased/old comparison)

https://github.com/AppImage/AppImageKit/wiki/Similar-projects

 8 / 24

Alternatives?

● Option 2: Package management, but do it right
and make it distro-independent

Nix

 9 / 24

Nix & Guix (Overview)

● Fully track all dependencies
● Never overwrite

– Can never break working packages, absolutely
zero dependency hell

● Reproducible, system-independent packages
● Available on all Linux distributions, as well as

many other operating systems

 10 / 24

Nix & Guix (Overview)

● Fixes the problems:
– Dependencies all tracked
– No bitrot (garbage collection, everything in

store)
– Developers can release default.nix files, and

can even pin to specific versions/ check
different nixpkgs versions.

● But also: breaks expectations, so applications
need to be patched

 11 / 24

Why is this cool?

● No dependency hell, system-independent
● A lot of cool new features

– Rootless installs
– Install a package for the duration of a shell
– Packages are expressions, not files
– Bit-for-bit identical dev environments
– Cache distributes binaries, can still patch your

sources Gentoo-style, build with musl, etc

 12 / 24

How it works

● When a derivation (package) is built, give it a
unique name (hash of inputs)

● To change installed packages, link them into a
profile (~/.nix-profile or /run/current-system/sw)

● Always use absolute paths, produce files in fixed
format
– Packages are just directories with /bin,

/share, /etc, etc.
● Yes this means we patch binaries

 13 / 24

My profile

 14 / 24

My profile

 15 / 24

NixOS

● Tl;dr Nix works for packages, why not make the
entire system a package?
– System configuration version chosen at boot,
– Get all the same benefits, can send system

configurations over network, isolation
– Instant, nearly* atomic switches

● E.g. can shut down during update

*Services need to be restarted and this may take some time

 16 / 24

NixOS

● Downsides:
– Can’t run binaries from the internet without

patching
● There are binaries in npm/maven/etc...
● In Nixpkgs we use a tool called patchelf to

fix them up
● Still have snap/flatpak/appimage though

– Still need /usr/bin/env and /bin/sh to make
shebangs work reasonably well

 17 / 24

What about Guix?

● Some people wanted in on Nix but it wasn’t free
enough for them
– Uses exclusively (and I mean it) Guile Scheme
– Only free software(/firmware for GuixSD)

https://www.gnu.org/distros/free-distros.en.h
tml

– Much younger than Nix, so generally fewer
packages

https://www.gnu.org/distros/free-distros.en.html
https://www.gnu.org/distros/free-distros.en.html

 18 / 24

Questions?

 19 / 24

 20 / 24

Nix(OS) Guix(SD)
Package language Nix, Bash Guile Scheme

Implementation language C++ Guile Scheme (again)

Freeness (GNU-style) Optionally free
(allowUnfree = true;)

Fully free (no nonfree
packages)

Supported Environments Officially: Linux, Darwin
(MacOS)
Somewhat: Cygwin, BSD,
Android, iPhone, RaspPi,
Solaris
NixOS uses Linux

Linux, GNU Hurd
GuixSD uses Linux-libre,
someday Hurd too
https://www.gnu.org/software/guix/blog/
2015/porting-guix-and-guixsd/

System Daemon systemd GNU Shephard
(previously known as
GNU dmd)

License MIT/X11 GPLv3

Store location /nix /gnu

Low-level comparison of Nix
and Guix

 21 / 24

Other random nix details:
Tips
● Manuals:

https://nixos.org/nix/manual/
https://nixos.org/nixos/manual/

● Can search packages/options:
https://nixos.org/nixos/packages.html
(or use `nix search` from a terminal)
https://nixos.org/nixos/options.html

● Irc: #nixos for both nixpkgs & nixos. They’re
quite helpful

● Arch wiki is very useful if you can translate

https://nixos.org/nix/manual/
https://nixos.org/nixos/packages.html
https://nixos.org/nixos/options.html

 22 / 24

Other random nix details:
Release structure for nixpkgs
● Two serious options and some foot-shooting

options:
– Nixpkgs stable – biyearly releases, tested

automatically, definitely binary distribution
– Nixpkgs unstable – rolling, tested

automatically, could be source or binary
– The git repo – no tests, usually from source
– Somebody else’s unmerged branch.

Sometimes you really want Pantheon DE

 23 / 24

Other random nix details:
Tips
● In my daily usage, I use a combination of

desktop applications in my environment /
system
– Mixed repositories: stable + unstable +

random other sources (anyone with the right
files can give you packages)

– System is on stable

 24 / 24

Other random nix details:
Workflow/Philosophy for Devs
● It’s not good practice to keep development tools

in your global environment:
– (e.g. g++ is any version, there’s no g++-8, no

python2/python3, so pick them when you
need them)

● I use direnv w/ nix-shell, so in a project directory
it pulls in everything automatically
– Aliases make this very fast

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

