The Last Word in File Systems
CC-BY-SA 2019

Josh Bicking

A brief history of disk filesystems

e Purpose
o Manage disk space
o Provide a user-friendly abstraction
m Files, folders

e Originally prioritized minimal overhead (ex: FAT, early ext*)
o Usability limitations: Short filenames, case insensitivity, file size limits, FS size limits, no
permissions
o Worst of all: volatile!
e Eventually added new features (ext3+, NTFS)

o journaling: write changes to a log, which will then be committed to the FS
o ACLs: advanced permission rules for files and directories
o Modern FSes work pretty well!

ZFS history: A tale of legal spaghettik

Developed by Sun Microsystems for Solaris

2007 - Development starts

2004 - ZFS announced publicly

2005 - OpenSolaris comes to fruition: ZFS code included, under the Common
Development and Distribution License (CDDL)

e 2005-2010 - Sun continues to update ZFS, provide new features
o And everyone wanted em. OSes developed their own ZFS implementation, or included the
code
o Linux: The CDDL and GPLv2 don't get along
m The slow and safe solution: FUSE (filesystem in user space)
o FreeBSD
o Mac OS X (later discontinued, and developed as MacZFS)

ZFS history: A tale of legal spaghetti

e FEarly 2010 - Acquisition of Sun Microsystems by Oracle

e [ate 2010 - The illumos project launches
o Shortly after, OpenSolaris is discontinued. Yikes.
o illumos devs continue ZFS development
o Check out Fork Yeah! The rise and development of illumos

e 2013-The OpenZFS project was founded

o All the cool kids are using ZFS now
o Goal of coordinated open-source development of ZFS

illumos

OpenZFS

https://www.youtube.com/watch?v=-zRN7XLCRhc

ZFS on Linux, as of 2016+

e Ubuntu 16.04 bundled ZFS as a kernel module, claimed license compatibility
o FSF was disapproving
o Original CDDL proposal to the OSI stated “the CDDL is not expected to be compatible with the
GPL, since it contains requirements that are not in the GPL"
e Nowadays: most think it's fine if they’re bundled separately
o Ex: GPL'd Linux using the CDDL'd ZFS library

Configuring zfs-dkms
Licenses of 2FS and Linux are incompatible

| 2FS is licensed under the Common Development and Distribution License (CDDL), and the Linux kernel is licensed under the
GNU General Public License Version 2 (GPL-2). While both are free open source licenses they are restrictive licenses.
The combination of them causes problems because it prevents using pieces of code exclusively available under one license
with pieces of code exclusively available under the other in the same binary.

You are going to build 2FS using DKMS in which way they are not going to be built into one monolithic hinary. Please he
aware that distributing both of the hinaries in the same media (disk images, wirtual appliances, etc) may lead to
infringing.

ZFS on Linux: Installing

e Debian Stretch, in contrib (Jessie, in backports):
o apt install linux-headers-$(uname -r) zfs-dkms zfsutils-linux
[zfs-initramfs]

e Ubuntu 16.04+:

o apt install zfsutils-linux

e Fedora/RHEL/CentOS:
o Repo from http://download.zfsonlinux.org/ must be added
o See Getting Started on the zfsonlinux/zfs GitHub wiki
o RHEL/CentOS: Optional kABI-tracking kmod (no recompiling with each kernel update!)

http://download.zfsonlinux.org/
https://github.com/zfsonlinux/zfs/wiki/Getting-Started

ZFS features: what do it do

Not only a file system, but a

volume manager too
o Can have complete knowledge of both
physical disks and the filesystem

Max 716 Exabytes file size, Max 256
Quadrillion Zettabytes storage
Snapshots

o With very little overhead, thanks to a
copy-on-write (COW) transactional
model

Native data deduplication (!)

V' 2y

Data integrity verification and

automatic repair
o Hierarchical checksumming of all data
and metadata

Native handling of tiered storage
and cache devices

Smart caching decisions and
cache use

Native data compression

Easy transmission of volumes, or
volume changes

ZFS Terminology

e vdev
o Hardware RAID, physical disk, etc.

e pool (or zpool)

VDEV
o One or more vdevs
e raidz, mirror, etc.
o ZFS controlled RAID levels ZFS Pool
o Some combination of vdevs _

o Specified at pool creation I_
==

ZFS Terminology

e (dataset
o “Containers” for the filesystem part of ZFS
o Mount point specified with the mountpoint configuration option
o Nestable to fine-tune configuration
e volume or (zvol)
o Ablock device stored in a pool

zfs list | grep -E "AVAIL |homePool/vms|homePool/home/jibby|homePool/var/log"
NAME USED AVAIL REFER MOUNTPOINT
homePool/home/jibby 1.27T .31T 932G /home/jibby
homePool/var/log 191M .31T 98.3M /var/log

homePool/vms 342G 31T 7.13G /vms
homePool/vms/base-109-disk-0 1.67G 31T 1.67G
homePool/vms/base-110-disk-0 12.8K 31T 1.67G
homePool/vms/vm-100-disk-0 4.66G .31T 5.59G

ZFS Commands: starting a pool

zpool create myPool /dev/vdb /dev/vdc

zpool list

NAME SIZE ALLOC FREE EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
myPool 99.5G 111K 99.5G - 0% 0% 1.00x ONLINE -

zpool destroy myPool

zpool create myMirrorPool mirror /dev/vdb /dev/vdc

zpool list

NAME SIZE ALLOC FREE EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
myMirrorPool 49.8G 678K 49.7G - 0% 0% 1.00x ONLINE -

ZFS Commands: datasets and volumes

zfs create myMirrorPool/myDataset

zfs list

NAME USED AVAIL REFER MOUNTPOINT
myMirrorPool 111K 48.2G 24K /myMirrorPool
myMirrorPool/myDataset 24K 48.2G 24K /myMirrorPool/myDataset
zfs create -V 3G myMirrorPool/myVol

mkfs.ext4 /dev/zvol/myMirrorPool/myVol

mkdir /myVol

mount /dev/zvol/myMirrorPool/myVol /myVol/

zfs list

NAME USED AVAIL REFER MOUNTPOINT
myMirrorPool 3.16G 45.1G 24K /myMirrorPool
myMirrorPool/myDataset 24K 45.1G 24K /myMirrorPool/myDataset
myMirrorPool/myVol 3.16G 48.1G 81.8M -

Copy-on-write (COW)

e Moooove aside, journaled filesystems

e Write process

o Write new data to a new location on disk

o For any data that points to that data, write
new data as well (indirect blocks)

o In one (atomic) action, update the
uberblock: the “entrypoint” to all data in the
FS

o TLDR: Either the whole write occurs, or
none of it does

e Results in a “Snapshots for free”
system

1. Initial block tree

Snapshots

e Simple implementation
o What if we didn't discard the old data during COW?
e Label that instance of data
o Future changes are stacked on top of the snapshot
e Essentially a list of changes between then and now

zfs list -t snapshot -r homePool/home | grep -E "AVAIL |monthly"

NAME USED AVAIL REFER MOUNTPOINT
homePool/home@zfs-auto-snap_monthly-2019-02-01-0500 12.8K - 72.6M -
homePool/home@zfs-auto-snap_monthly-2019-03-01-0500 0B - 72.6M -

homePool/home/jibby@zfs-auto-snap_monthly-2019-02-01-0500 33.4G - 1.27T -
homePool/home/jibby@zfs-auto-snap_monthly-2619-03-01-0500 0B - 932G
homePool/home/root@zfs-auto-snap_monthly-2019-02-01-06500 511K - 152M
homePool/home/root@zfs-auto-snap_monthly-2019-03-01-0500 0B - 152M

ZFS commands: snapshots

dd if=/dev/zero bs=1M count=1000 of=/myMirrorPool/myDataset/file

zfs list

NAME USED AVAIL REFER MOUNTPOINT

myMirrorPool 4.07G 44.1G 24K /myMirrorPool
myMirrorPool/myDataset 1000M 44.1G 1006M /myMirrorPool/myDataset
myMirrorPool/myVol 3.16G 47.1G 114M -

zfs snapshot myMirrorPool/myDataset@newfile

rm /myMirrorPool/myDataset/file

zfs list

NAME USED AVAIL MOUNTPOINT

myMirrorPool 4.07G 44.1G /myMirrorPool
myMirrorPool/myDataset 1000M 44.1G /myMirrorPool/myDataset
myMirrorPool/myVol 3.16G 47.1G -

ZFS commands: snapshots

zfs list -t snapshot

NAME USED AVAIL REFER MOUNTPOINT
myMirrorPool/myDataset@newfile 1006M - 10060M -

zfs snapshot myMirrorPool/myDataset@deletedfile

zfs list -t snapshot

NAME USED AVAIL REFER MOUNTPOINT
myMirrorPool/myDataset@newfile 1006M 1000M -
myMirrorPool/myDataset@deletedfile 0B - 24K -

zfs destroy myMirrorPool/myDataset@deletedfile

1ls /myMirrorPool/myDataset/

zfs rollback -r myMirrorPool/myDataset@newfile

1ls /myMirrorPool/myDataset/

file

ZFS pitfalls

e Moderately steep learning curve
o Notreally a “set and forget” FS, more of “set, configure, and monitor performance”
e If configured wrong, performance can suffer
o And there’s a lot to be configured
e More overhead than your average FS
o While snapshots are nice, might not be worth running on your daily driver
e No good, long term solution to fragmentation

o Leading idea is block pointer rewrite, which an OpenZFS member described as “like changing
your pants while you're running”

Demo time!

Make a pool

Make a volume

Look at configurables

Play around with compression
Try out snapshots

Demo commands, for future generations to follow along:

fdisk -1
zpool create tank -f /dev/vdb /dev/vdc
fdisk -1

zfs create -o compression=off -o mountpoint=/dataset1
tank/dataset1

cd /dataset1

zfs list

dd if=/dev/zero bs=1M count=2000 | pv | dd
of=/dataset1/outfile bs=1M

1s -1h outfile

zfs get all tank/dataset1

rm outfile

zfs set compression=zle tank/dataset1

dd if=/dev/zero bs=1M count=2000 | pv | dd
of=/dataset1/outfile bs=1M

1s -1h outfile

zfs get all tank/datasetl

zfs snapshot tank/datasetl@add_outfile
zfs list -t snapshot

cd .zfs

tree

cd snapshot/add_outfile/

1s -1h outfile

cd /dataset1

rm outfile

tree .zfs

1s

zfs list -t snapshot

zfs create -V 108G tank/volil

More Info & References

Are the GPLv2 and CDDL incompatible?

Sun’'s Common Development and Distribution License Request to the OSI

zfsonlinux/zfs GitHub wiki: Getting Started

Github issue: ZFS Fragmentation: Long-term Solutions

Fork Yeah! The rise and development of illumos

OpenZFS User Documentation

Aaron Toponce's “Getting Started with ZFS” Guide

https://blog.hansenpartnership.com/are-gplv2-and-cddl-incompatible/
https://lwn.net/Articles/114840/
https://github.com/zfsonlinux/zfs/wiki/Getting-Started
https://github.com/zfsonlinux/zfs/issues/3582
https://www.youtube.com/watch?v=-zRN7XLCRhc
http://open-zfs.org/wiki/System_Administration
https://pthree.org/2012/04/17/install-zfs-on-debian-gnulinux/

