
CC-BY-SA 2019
Josh Bicking CC-BY-SA 2019

Josh Bicking

A brief history of disk filesystems

● Purpose
○ Manage disk space
○ Provide a user-friendly abstraction

■ Files, folders

● Originally prioritized minimal overhead (ex: FAT, early ext*)
○ Usability limitations: Short filenames, case insensitivity, file size limits, FS size limits, no

permissions
○ Worst of all: volatile!

● Eventually added new features (ext3+, NTFS)
○ journaling: write changes to a log, which will then be committed to the FS
○ ACLs: advanced permission rules for files and directories
○ Modern FSes work pretty well!

ZFS history: A tale of legal spaghetti

● Developed by Sun Microsystems for Solaris
● 2001 - Development starts
● 2004 - ZFS announced publicly
● 2005 - OpenSolaris comes to fruition: ZFS code included, under the Common

Development and Distribution License (CDDL)
● 2005-2010 - Sun continues to update ZFS, provide new features

○ And everyone wanted em. OSes developed their own ZFS implementation, or included the
code

○ Linux: The CDDL and GPLv2 don’t get along
■ The slow and safe solution: FUSE (filesystem in user space)

○ FreeBSD
○ Mac OS X (later discontinued, and developed as MacZFS)

ZFS history: A tale of legal spaghetti

● Early 2010 - Acquisition of Sun Microsystems by Oracle
● Late 2010 - The illumos project launches

○ Shortly after, OpenSolaris is discontinued. Yikes.
○ illumos devs continue ZFS development
○ Check out Fork Yeah! The rise and development of illumos

● 2013 - The OpenZFS project was founded
○ All the cool kids are using ZFS now
○ Goal of coordinated open-source development of ZFS

https://www.youtube.com/watch?v=-zRN7XLCRhc

ZFS on Linux, as of 2016+

● Ubuntu 16.04 bundled ZFS as a kernel module, claimed license compatibility
○ FSF was disapproving
○ Original CDDL proposal to the OSI stated “the CDDL is not expected to be compatible with the

GPL, since it contains requirements that are not in the GPL”

● Nowadays: most think it’s fine if they’re bundled separately
○ Ex: GPL’d Linux using the CDDL’d ZFS library

ZFS on Linux: Installing

● Debian Stretch, in contrib (Jessie, in backports):
○ apt install linux-headers-$(uname -r) zfs-dkms zfsutils-linux

[zfs-initramfs]

● Ubuntu 16.04+:
○ apt install zfsutils-linux

● Fedora/RHEL/CentOS:
○ Repo from http://download.zfsonlinux.org/ must be added
○ See Getting Started on the zfsonlinux/zfs GitHub wiki
○ RHEL/CentOS: Optional kABI-tracking kmod (no recompiling with each kernel update!)

http://download.zfsonlinux.org/
https://github.com/zfsonlinux/zfs/wiki/Getting-Started

ZFS features: what do it do

● Not only a file system, but a
volume manager too
○ Can have complete knowledge of both

physical disks and the filesystem

● Max 16 Exabytes file size, Max 256
Quadrillion Zettabytes storage

● Snapshots
○ With very little overhead, thanks to a

copy-on-write (COW) transactional
model

● Native data deduplication (!)

● Data integrity verification and
automatic repair
○ Hierarchical checksumming of all data

and metadata

● Native handling of tiered storage
and cache devices

● Smart caching decisions and
cache use

● Native data compression
● Easy transmission of volumes, or

volume changes

ZFS Terminology

● vdev
○ Hardware RAID, physical disk, etc.

● pool (or zpool)
○ One or more vdevs

● raidz, mirror, etc.
○ ZFS controlled RAID levels
○ Some combination of vdevs
○ Specified at pool creation

ZFS Terminology

● dataset
○ “Containers” for the filesystem part of ZFS
○ Mount point specified with the mountpoint configuration option
○ Nestable to fine-tune configuration

● volume or (zvol)
○ A block device stored in a pool

zfs list | grep -E "AVAIL|homePool/vms|homePool/home/jibby|homePool/var/log"
NAME USED AVAIL REFER MOUNTPOINT
homePool/home/jibby 1.27T 1.31T 932G /home/jibby
homePool/var/log 191M 1.31T 98.3M /var/log
homePool/vms 342G 1.31T 7.13G /vms
homePool/vms/base-109-disk-0 1.67G 1.31T 1.67G -
homePool/vms/base-110-disk-0 12.8K 1.31T 1.67G -
homePool/vms/vm-100-disk-0 4.66G 1.31T 5.59G -

ZFS Commands: starting a pool

zpool create myPool /dev/vdb /dev/vdc
zpool list
NAME SIZE ALLOC FREE EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
myPool 99.5G 111K 99.5G - 0% 0% 1.00x ONLINE -
zpool destroy myPool
zpool create myMirrorPool mirror /dev/vdb /dev/vdc
zpool list
NAME SIZE ALLOC FREE EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
myMirrorPool 49.8G 678K 49.7G - 0% 0% 1.00x ONLINE -

ZFS Commands: datasets and volumes

zfs create myMirrorPool/myDataset
zfs list
NAME USED AVAIL REFER MOUNTPOINT
myMirrorPool 111K 48.2G 24K /myMirrorPool
myMirrorPool/myDataset 24K 48.2G 24K /myMirrorPool/myDataset
zfs create -V 3G myMirrorPool/myVol
mkfs.ext4 /dev/zvol/myMirrorPool/myVol
mkdir /myVol
mount /dev/zvol/myMirrorPool/myVol /myVol/
zfs list
NAME USED AVAIL REFER MOUNTPOINT
myMirrorPool 3.10G 45.1G 24K /myMirrorPool
myMirrorPool/myDataset 24K 45.1G 24K /myMirrorPool/myDataset
myMirrorPool/myVol 3.10G 48.1G 81.8M -

Copy-on-write (COW)

● Moooove aside, journaled filesystems
● Write process

○ Write new data to a new location on disk
○ For any data that points to that data, write

new data as well (indirect blocks)
○ In one (atomic) action, update the

uberblock: the “entrypoint” to all data in the
FS

○ TLDR: Either the whole write occurs, or
none of it does

● Results in a “Snapshots for free”
system

Snapshots

● Simple implementation
○ What if we didn’t discard the old data during COW?

● Label that instance of data
○ Future changes are stacked on top of the snapshot

● Essentially a list of changes between then and now

zfs list -t snapshot -r homePool/home | grep -E "AVAIL|monthly"
NAME USED AVAIL REFER MOUNTPOINT
homePool/home@zfs-auto-snap_monthly-2019-02-01-0500 12.8K - 72.6M -
homePool/home@zfs-auto-snap_monthly-2019-03-01-0500 0B - 72.6M -
homePool/home/jibby@zfs-auto-snap_monthly-2019-02-01-0500 33.4G - 1.27T -
homePool/home/jibby@zfs-auto-snap_monthly-2019-03-01-0500 0B - 932G -
homePool/home/root@zfs-auto-snap_monthly-2019-02-01-0500 511K - 152M -
homePool/home/root@zfs-auto-snap_monthly-2019-03-01-0500 0B - 152M -

ZFS commands: snapshots

dd if=/dev/zero bs=1M count=1000 of=/myMirrorPool/myDataset/file
zfs list
NAME USED AVAIL REFER MOUNTPOINT
myMirrorPool 4.07G 44.1G 24K /myMirrorPool
myMirrorPool/myDataset 1000M 44.1G 1000M /myMirrorPool/myDataset
myMirrorPool/myVol 3.10G 47.1G 114M -
zfs snapshot myMirrorPool/myDataset@newfile
rm /myMirrorPool/myDataset/file
zfs list
NAME USED AVAIL REFER MOUNTPOINT
myMirrorPool 4.07G 44.1G 24K /myMirrorPool
myMirrorPool/myDataset 1000M 44.1G 24K /myMirrorPool/myDataset
myMirrorPool/myVol 3.10G 47.1G 114M -

ZFS commands: snapshots

zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
myMirrorPool/myDataset@newfile 1000M - 1000M -
zfs snapshot myMirrorPool/myDataset@deletedfile
zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
myMirrorPool/myDataset@newfile 1000M - 1000M -
myMirrorPool/myDataset@deletedfile 0B - 24K -
zfs destroy myMirrorPool/myDataset@deletedfile
ls /myMirrorPool/myDataset/
zfs rollback -r myMirrorPool/myDataset@newfile
ls /myMirrorPool/myDataset/
file

ZFS pitfalls

● Moderately steep learning curve
○ Not really a “set and forget” FS, more of “set, configure, and monitor performance”

● If configured wrong, performance can suffer
○ And there’s a lot to be configured

● More overhead than your average FS
○ While snapshots are nice, might not be worth running on your daily driver

● No good, long term solution to fragmentation
○ Leading idea is block pointer rewrite, which an OpenZFS member described as “like changing

your pants while you're running”

Demo time!

● Make a pool
● Make a volume
● Look at configurables
● Play around with compression
● Try out snapshots

Demo commands, for future generations to follow along:

fdisk -l
zpool create tank -f /dev/vdb /dev/vdc
fdisk -l
zfs create -o compression=off -o mountpoint=/dataset1
tank/dataset1
cd /dataset1
zfs list
dd if=/dev/zero bs=1M count=2000 | pv | dd
of=/dataset1/outfile bs=1M
ls -lh outfile
zfs get all tank/dataset1

rm outfile
zfs set compression=zle tank/dataset1
dd if=/dev/zero bs=1M count=2000 | pv | dd
of=/dataset1/outfile bs=1M
ls -lh outfile
zfs get all tank/dataset1

zfs snapshot tank/dataset1@add_outfile
zfs list -t snapshot
cd .zfs
tree
cd snapshot/add_outfile/
ls -lh outfile
cd /dataset1
rm outfile
tree .zfs
ls
zfs list -t snapshot
zfs create -V 10G tank/vol1

More Info & References

Are the GPLv2 and CDDL incompatible?

Sun’s Common Development and Distribution License Request to the OSI

zfsonlinux/zfs GitHub wiki: Getting Started

Github issue: ZFS Fragmentation: Long-term Solutions

Fork Yeah! The rise and development of illumos

OpenZFS User Documentation

Aaron Toponce’s “Getting Started with ZFS” Guide

https://blog.hansenpartnership.com/are-gplv2-and-cddl-incompatible/
https://lwn.net/Articles/114840/
https://github.com/zfsonlinux/zfs/wiki/Getting-Started
https://github.com/zfsonlinux/zfs/issues/3582
https://www.youtube.com/watch?v=-zRN7XLCRhc
http://open-zfs.org/wiki/System_Administration
https://pthree.org/2012/04/17/install-zfs-on-debian-gnulinux/

