
AN INTRODUCTION TO 
COMMAND LINE LINUX FOR 
ABSOLUTE BEGINNERS
How to not be scared when typing in the shell.



WELCOME TO SHELL

• Welcome to the shell. We’re going to be covering the Bourne Again Shell, 
also called “bash”. Almost everything discussed here will work in other shells 
though.

• Most modern linux systems use bash.

• There are other shells such as fish, zsh, and ksh, they are similar but may have 
different features

• All shells display output from something called “STDOUT”, or standard output, 
and take input from something called “STDIN”, or standard input. 

• A quick note: using the “clear” command will clear your terminal so that you 
can start over with a blank screen if it becomes too crowded



WHERE AM I?

• Now that you’re in the shell, where are we?

• Use the “pwd” command to find out what directory you’re in.

• “pwd” stands for “Print Working Directory”

• If we want to see what’s in our current directory, we can use the “ls” 
command

• “ls” lists the files and directories in your current working directory.

• “ls” also has a few options that may be useful, such as “ls –a” to list 
everything, including hidden directories, and “ls –l” that lists things such as file 
size, creation date, permissions, and more.



WE HAVE OPTIONS

• Short options or flags are single character things we can pass to a command to do 
things. They’re generally prepended by a single dash character.

• Example: ls –a 

• There are also things called long options, longs, or long flags that are generally full 
words prepended by two dashes.

• Example: ls –-all

• These long options are generally just more verbose ways to represent short flags. 

• Arguments are longer strings that can be passed to a command for things like file 
input, text to send, and more. Arguments are usually passed after all flags.

• Example: “mkdir directory”





DIRECTIONS FOR DIRECTORIES

• We’re not just limited to our current working directory, we can move around. 
We can use the “cd” command to change directories. It’s followed by a 
path.

• “cd” accepts full paths, but also relative paths for things in your current 
directory, for example “cd /home/username/directory” works from 
anywhere, but if we were in the home directory we can just use “cd 
directory”

• We can also create a new directory using the “mkdir” command followed 
by the name of the directory we want to create

• If we want to go up a directory, back to it’s parent directory without typing 
in the whole path, we can use the “..” path to show that we want to go up 
one level. “cd ..”



ADDITIONS AND DELETIONS

• Lets create a file

• We can use the “touch” command to create a file that doesn’t already 
exist. 

• Lets create a new file: touch file.txt

• Use “ls” to show that there’s a new file called file.txt

• Now lets remove it. We can use the “rm” command to delete or “remove” 
files.

• Rm file.txt



ECHO “ARROW” >> KNEE.TXT

• Arrows allow us to redirect command output to files

• >> will append data to a file

• > will overwrite all data in a file with new data

• Can filter errors, can pass data into a command, and lots more.

• Lets write some data to a file using the echo command to print some data 
to stdout and then redirect said stdout to a file.

• Echo “Hello, World!” > hello.txt

• The “echo” command simply outputs text to STDOUT, like the print() 
command in many programming languages.



THE CAT

• There’s a cat in your computer!

• Cat stands for “concatenate” and can be used to view the contents of a 
file. Just give cat a file and it will print the entire thing to stdout.

• Sometimes we have long files. One way to get to these files is to look at the 
head and the tail of the cat.

• The head command will print the first 10 lines of a file

• The tail command will print the last 10 lines.

• The number of lines displayed can be changed using the –n option.



PLUMBING

• The pipe character “|” can be used to redirect command output to other 
commands.

• This is a feature that was copied from UNIX. It’s designed to allow users to 
chain many small commands together to create bigger and better 
programs. 

• It is one of the fundamental features of all UNIX-like operating systems.



MORE OR LESS

• So, you want to scroll through a long file rather than viewing the top, bottom, 
or all of the file?

• We can do this by passing the cat of the file through a command called 
more

• More is what’s called a pager. A pager allows you to scroll through a file 
using the space bar to advance forwards.

• Cat /var/log/dpkg.log |more

• Press Q to quit out of more

• There’s also less, which is a more advanced version of more with some 
advanced features.



SEARCHING

• We can search through a file. To find lines containing only certain strings.

• Simply pass the cat of a file through a command called grep and give it a 
string to search for.

• Cat /var/log/dpkg.log | grep gcc



IT’S NOT VIM

• “Ed is the standard text editor”

• Sometimes we need to edit a text file, or browse a text file.

• Instead of using vim, we are instead going to learn how to use nano 
because it’s a bit more beginner-friendly.

• Ctrl+o to save

• Ctrl+x to exit

• That’s how easy nano can be!



USERS AND PERMISSIONS

• Having multiple users is a big feature of linux

• Whoami can be used to figure out what user you are currently logged in as.

• Why can’t I edit this file? Lets see who owns it. ls -l to list the files in the current 
directory with more details.

• There are several default users on linux, the most important user (besides you) 
is the root account.

• Root can do anything. Also called the superuser account.

• Root can change any file, remove any file, change any setting, do anything. 
Root is an extremely powerful account.



I AM ROOT

• Sometimes you need to run a command as root

• This should almost always be done using sudo, because the root account is 
almost always disabled for security reasons

• You must have rights to do sudo, this can be set up by a user with root 
access

• Some systems don’t have sudo, and instead have su

• Su allows you to access superuser functions and gain a full root shell

• Su should not be used unless absolutely necessary



PROCESSES

• All commands that run on a Linux system create what’s known as a process. 
A process is a way that Linux can manage the memory associated with said 
program and mange access to various system resources.

• Processes can run in the foreground or the background. Foreground 
programs are things that you are actively working on, such as nano, ls, or 
other commands we’ve discussed here. Background commands are things 
like a web server, etc.

• We can see the current processes running on a system using the “ps” 
command.

• You’ll notice the PID field, which is the ID that identifies processes on a Linux 
system.



SUSPEND AND RESUME

• We can suspend processes that are currently running in the foreground so 
that we can go do other things using the “ctrl+z” keyboard shortcut.

• Let’s try it with nano. Open a new nano instance and then minimize it using 
the ctrl+z command.

• Let’s run that “ps” command again, and we can then see our nano instance 
there.

• If we want to return out background command to the foreground, we can 
use the “fg” command. 



IT’S MURDER

• We can kill processes if they’re not behaving correctly

• Foreground processes can be killed using the “ctrl+c” keyboard shortcut.

• The C does not stand for copy, it stands for Cancel.

• We can kill background processes using their PID and the “kill” command.

• There are two methods of killing a process, asking it nicely to stop, and outright 
ending it.

• kill and then the process ID is the gentile way of asking a process to stop

• If that doesn’t work, we can force it to kill using “kill -9”

• Force killing a process may lose unsaved data, and will leave opened files, locks, 
and resources in use hanging, which could cause errors.

• Kill -9 should only be used as a last resort.



~ IS WHERE THE HEART IS

• ~ is a reference for your home directory, can be used to shorten things like 
/home/username/text.txt to ~/text.txt

• !! Is the bang bang command. It can be used to repeat the previous 
command. This is most useful for sudo !! To re-run a command as root.

• !$ will repeat the first argument after the previous command. This is useful for 
running multiple commands on a single file, such as echo “hello” > text.txt 
and then cat !$

• $ is the expansion character. It can be used for variables.

• * is the wildcard character. It can be used to match parts of a file name. 
example: rm *.png to remove all png files in a directory. Or, rm IMG-*.png 
remove all files with the prefix IMG- with file type png.



WHERE TO GET HELP

• The man pages

• --help

• Google, DuckDuckGo, Bing, Yahoo!


