title:

- The Rust Programming Language
author:

- Ben Goldberg

What is This Talk

> What is Rust?
» Why would you use Rust?
> Why wouldn’t you use Rust?

What This Talk Isn't

» Teaching you Rust
» In 90 minutes?!?

Learn Rust

» rust-lang.org
» CSCI-541/641 Programming Skills in Rust by Prof. Fluet

https://www.rust-lang.org/

A Brief History of Programming Languages

In the beginning there was C. ..

Pros:

» Low level control of memory
» Needed for systems programming

» Simple
» Stable

Cons:

P> Hard to write complex systems
» Too easy to mess up memory
» Parallel computing is hard

CH+

Pros:

» Easier to write complex software
> We OO now

Cons:

> Very complex
» When things go wrong, they go wrong

Note

» Modern C++ is better
» Because it's doing some of what Rust does

Memory Safety

» Managing memory is hard
> Especially is large, complex programs
» Especially especially when multi-threaded

char *str = malloc(10);
free(str);

// Bad things happend
printf ("%s", str);

Manual Memory Management Isn't Good Enough

Memory Leaks

Buffer overflow

Use after free

Double free

Null pointer dereference
Read uninitialized memory
Race conditions

VVyVYyVYVYYVYY

Manual Memory Management Isn't Good Enough

Home > Hacking > Vulnerabilities

BACK TO BASICS

What is the Heartbleed bug, how does it work
and how was it fixed?

The mistake that caused the Heartbleed vulnerability can be traced to a single line of code in
OpenSSL, an open source code library. Here's what you need to know now.

9 f LN N

of A By Josh Fruhlinger
{
£ CSO | SEP 13,2017 2553 AM PT

Heartbleed is a vulnerability that came to light in April of 2014; it allowed

CURRENT JOB LISTINGS

attackers unprecedented access to sensitive information, and it was present on
thousands of web servers, including those running major sites like Yahoo.

Heartbleed was caused by a flaw in OpenSSL, an open source code library that
implemented the Transport Layer Security (TLS) and Secure Sockets Layer
(SSL) protocols. In short, a malicious user could easily trick a vulnerable web
server into sending sensitive information, including usernames and passwords.

Manual Memory Management Isn't Good Enough

This simple link instantly crashes
Google Chrome

lhttp://a/
"~

Manual Memor ement Isn't Good Enoug

May 29, 2015, 04:18am

Apple Acknowledges Disastrous
iPhone Messages Bug, Suggests
This Temporary Fix

Amit Chowdhry Contributor ®

Tech enthusiast, born in Ann Arbor and educated at Michigan State

Earlier this week, I wrote about how a new iOS bug emerged that enabled
iPhone users to crash another person’s iPhone by simply sending a text
message. The text message -- which simply says: effective. Power
el « =Dy, TU -- causes the iPhone of the recipient to crash
continuously if the text is received while in lock screen mode. The
“Effective Power” bug (also known as Unicode of Death) only causes

issues between iPhone-to-iPhone communication.

Manual Memory Management Isn't Good Enough

Search Results

There are 9731 CVE entries that match your search.

Name Description

The main function in tools/wasm2js.cpp In Binaryen 1.38.22 has a heap-based buffer overflow because Emscripten is misused, triggering an error in cashew::JSPrinter: :print

emscripten-optimizer/simple_ast.h. A crafted input can cause segmentation faults, leading to denis ervice, as demonstrated by wasm2

A classic Stack-based buffer overflow exists In the zmLoadUser() function in zm_user.cpp of the zmu binary in ZoneMinder through 1.32.3, allowing an unauthenticated at

code via a long username

gdimageColorMatch in gd_color_match.C i the GD Graphics Library (aka LIbGD) 2.2 used i the imagecolormatch function I PHP before 5.6.40, 7.x before 7

and 7.3.x before 7.3.1, has a heap: frer overflow, This can be explolted by an attacker who Is able to trigger Imagecolormatch calls with crafted image

examples/benchmark/tis_bench.c in a benchmark tool in wolfSSL through 3.15.7 has a heap-based buffer overflow.

A panter overflow, with code execution, was discovered In ZeroMQ 15 (aka OMQ) 4.2.x and 4.3.x before 4.3.1, A v2_decodercpp 2mq;:v2. decoder.:size_ready integer overow

an authenticated attacker to overwrite an arbitrary amount of bytes beyond the bounds of a buffer, which can be leveraged to run arbitrary) the target system. The memory la)

e e el i il el e i it bl Ll e et e et L

technique that changes the flow of control).

An issue was discovered in Anti-Grain Geometry (AGG) 2.4 s used in SVG++ (aka svgpp) 1.2.3. A heap-based buffer overflow bug in svgpp_agg_render may lead to code execution. In the

anlin id function, the blend_hline function Is called repeatedly multiple times. blend_hiine s equivalent to a loop containing write operations. Each call writes a piece
ST a ard il plulcalaiore il Tatat Tt ralwee,
vulnerability in the vContainer of the Cisco SD-WAN Solution could allow an authenticated, remote attacker to cause a denial of service (DoS) condition and execute arbitrary code as the

e T e T e e e by the vContainer. An attacker could exploit this vulnerability by sending a malicious file to an affected vContainer instance. A
i aroleiieotdalfontimtaFec o e Tsatal ol il ot a mTactac Corial i ot it s oo ol eI FeEor F D e

arbkrary code s the root s

RIOT RIOT-OS version after commit 7af03ab624db0412c727eed9ab7630a5282e2fd3 contains a Buffer Overflow vulnerabilty in sock_dns, an implementation of the DNS protocol utilizing the

I that can result in Remote code executing. This attack appears to be exploitable via network connectivity

The Solution Up Until Now

Garbage Collectors!

» Guarantee some memory safety by taking away control

» Reduce performance

» Multi-threading is still hard

» Most modern langs use a GC (Java, JS, Python, Go, etc.)

How they work (oversimplified)

» Every object has a counter that tracks how many references to
it there are
» When the count hits zero, the memory is freed.

GCs Are Good Enough Most of the Time, but Not Always

» Discord switch from Go to Rust due to inconstant performance
from GC pauses
» Can't write an OS or kernel code*
» No Python in Linux
» Can't target embedded/real-time devices (ex. Arduino)

The Trade Off

Safety or Performance

What do we want?

We want to write performant and reliable programs easily and
productively

Comparison

C Rust

o)
Java
ML

Control / Performance

Haskell

Safety

What is Rust?

A staticly & strongly typed, multi-paradigm language that compiles
to machine code. It's has uses a novel ownership & borrowing

system to manage memory safely and automatically with a garbage
collector. Rust has a strong focus on correctness and performance.

What does that mean?

Ahead of Time Compiled

Rust is compiled to machine code ahead of running like C or C++

Staticly Typed

Every variable has an unchaining type know at compile time

Strongly Typed

The compiler enforces the type system (ex. You can't just cast a
number to a string)

Strong vs Weak, Static vs Dynamic

Strong
G A
Erlan roov
g 4 C# Scala
Clojure Ruby Java
Python Magik F&# Haskel
Dynamic < » Static
Perl PHP C
VB JavaScript C++
Y
Weak

Source: www.josephspurrier.com/strong-weak-dynamic-and-static-
typed-programming-languages

https://www.josephspurrier.com/strong-weak-dynamic-and-static-typed-programming-languages
https://www.josephspurrier.com/strong-weak-dynamic-and-static-typed-programming-languages

Ownership & Borrowing

The main magic of Rust

» Every object is owned by some context
» Only the owner can access the object
» Ownership can be transferred
P> A context can borrow an object
» While borrowed, the owner can't access it
» The borrow is scoped to some area of code
» Many immutable borrows or one mutable borrow
» immutable = read-only
» mutable = read/write

Read /Write safety

You can have many readers or one writer, safely

What Does This Look Like?

Let's learn a little Rust

If you want to play with Rust in your browsers go to
play.rust-lang.org

https://play.rust-lang.org/

Hello World

fn main() {
println! ("Hello, world!");

Immutable by default

All variables are immutable by default
Doesn’t work

let x = 5;

X = 3;

Works

let mut x = 5;

X = 3;

Static Typing

All variables must have one type
let x: 132 = 77;

But with type inference
let x = 77;

Rust’'s Core Principle

Aliasing XOR Mutation

Ownership

Ownership rules

» Each value in Rust has a variable that's called its owner
» There can only be one owner at a time
» When the owner goes out of scope, the value will be dropped
fn main() {
let x = 1;
{
let y = 5;
println! ("x:{}, y:{}", %, y);
}
// Doesn't compile!!!!
println! ("x:{}, y:{}", %, y);

Another Example

fn hello(name: String) {
println! ("Hello {}!", name);
// mame is destroyed here

fn main() {
let name = String::from("RIT LUG");
hello(name) ;
// Doesn't compile because name has been freed
println! ("Goodbye {}", name);

References and Borrowing

We can lend out ownership of a value with a reference

fn hello(name: &str) {
println! ("Hello {}!", name);

fn main() {
let name = "RIT LUG";
hello(&name) ;
println! ("Goodbye {}", name);

Immutable vs Mutable References

Immutable reference

// Doesn't compile

fn inc(x: &i32) {
x += 1;

}

Mutable reference

fn inc(x: &mut i32) {
x += 1;

}

fn main() {
let mut x = 1;
inc(&mut x);

Immutable vs Mutable References cont.

Aliasing or Mutability

let mut vl = 3;
let rl1 = &vi;
let r2 = &vi;

// Doesn't compile
let mut v2 = 4;
let rl = &mut v2;
let r2 = &mut v2;

Actually this does compile because Rust is smart, but it wouldn't if
you tried to actually use both mutable references

Rust Prevents Many Classes of Memory Errors

Use after free

Null pointer dereference
Using uninitialized memory
Double free

Buffer overflow

Data race

Many concurrency/muti-threading bugs
» Rust also enforces memory safety across threads, which most
GCs don't

» Type errors

VVVYyVYVYYVYY

If it compiles it probably works™

Rust is Fast

» Rust’s speed is on par with C and C++

Cargo

Rust has a built tool /package manager called cargo that's very good

> Makes it very easy to install libraries
» There's a single blessed PM that everyone uses unlike Python
» Run cargo build and it just works™™

Use Cases

Command line tools
Operating systems
Network services
Web Apps
Webassembly
Embedded

Companies Using Rust in Production

» Mozilla
» Parts of Firefox

» Facebook

» Dropbox
» Storage backend

» Cloudflare

» Discord
» Parts of backend

> NPM
> Yelp
> Tilde

The Down Sides

Rust sounds great. .. but what's the catch?

The Down Sides

» The compiler is slow
» Medium sized Rust programs can take several minutes to
compile
> Many Rust programmes have a lot of dependencies
» Making install and publishing libraries has downsides
» The NPM problem
» Hard to learn
» Rust is pretty different to most modern langs
> Not a lot of jobs, especially entry level
» Many features still in development (async/await)
» |eads to a lot of ecosystem churn
» No LTS compiler releases
» Makes packaging Rust programs for LTS Linux distros harder
» Only one real compiler implementation
» Doesn't support as many CPU architectures and OSes as C

The Down Sides

All of the problems are being worked on but for now, this is how it is

The End

Questions?

Other Stuff

» These slides are licensed under the CC-BY-SA license
» Source code available at git.sr.ht/~zethra/rust_presentation

https://creativecommons.org/licenses/by-sa/4.0/
https://git.sr.ht/~zethra/rust_presentation

