
title:
- The Rust Programming Language
author:
- Ben Goldberg



What is This Talk

I What is Rust?
I Why would you use Rust?
I Why wouldn’t you use Rust?



What This Talk Isn’t

I Teaching you Rust
I In 90 minutes?!?



Learn Rust

I rust-lang.org
I CSCI-541/641 Programming Skills in Rust by Prof. Fluet

https://www.rust-lang.org/


A Brief History of Programming Languages

In the beginning there was C. . .



C

Pros:

I Low level control of memory
I Needed for systems programming

I Simple
I Stable

Cons:

I Hard to write complex systems
I Too easy to mess up memory
I Parallel computing is hard



C++

Pros:

I Easier to write complex software
I We OO now

Cons:

I Very complex
I When things go wrong, they go wrong

Note

I Modern C++ is better
I Because it’s doing some of what Rust does



Memory Safety

I Managing memory is hard
I Especially is large, complex programs
I Especially especially when multi-threaded

char *str = malloc(10);
free(str);
// Bad things happend
printf("%s", str);



Manual Memory Management Isn’t Good Enough

I Memory Leaks
I Buffer overflow
I Use after free
I Double free
I Null pointer dereference
I Read uninitialized memory
I Race conditions



Manual Memory Management Isn’t Good Enough



Manual Memory Management Isn’t Good Enough



Manual Memory Management Isn’t Good Enough



Manual Memory Management Isn’t Good Enough



The Solution Up Until Now

Garbage Collectors!

I Guarantee some memory safety by taking away control
I Reduce performance
I Multi-threading is still hard
I Most modern langs use a GC (Java, JS, Python, Go, etc.)

How they work (oversimplified)

I Every object has a counter that tracks how many references to
it there are

I When the count hits zero, the memory is freed.



GCs Are Good Enough Most of the Time, but Not Always

I Discord switch from Go to Rust due to inconstant performance
from GC pauses

I Can’t write an OS or kernel code*
I No Python in Linux

I Can’t target embedded/real-time devices (ex. Arduino)



The Trade Off

Safety or Performance



What do we want?

We want to write performant and reliable programs easily and
productively



Comparison



What is Rust?

A staticly & strongly typed, multi-paradigm language that compiles
to machine code. It’s has uses a novel ownership & borrowing
system to manage memory safely and automatically with a garbage
collector. Rust has a strong focus on correctness and performance.

What does that mean?



Ahead of Time Compiled

Rust is compiled to machine code ahead of running like C or C++



Staticly Typed

Every variable has an unchaining type know at compile time



Strongly Typed

The compiler enforces the type system (ex. You can’t just cast a
number to a string)



Strong vs Weak, Static vs Dynamic

Source: www.josephspurrier.com/strong-weak-dynamic-and-static-
typed-programming-languages

https://www.josephspurrier.com/strong-weak-dynamic-and-static-typed-programming-languages
https://www.josephspurrier.com/strong-weak-dynamic-and-static-typed-programming-languages


Ownership & Borrowing

The main magic of Rust

I Every object is owned by some context
I Only the owner can access the object
I Ownership can be transferred

I A context can borrow an object
I While borrowed, the owner can’t access it
I The borrow is scoped to some area of code
I Many immutable borrows or one mutable borrow

I immutable = read-only
I mutable = read/write



Read/Write safety

You can have many readers or one writer, safely



What Does This Look Like?

Let’s learn a little Rust

If you want to play with Rust in your browsers go to
play.rust-lang.org

https://play.rust-lang.org/


Hello World

fn main() {
println!("Hello, world!");

}



Immutable by default

All variables are immutable by default
Doesn’t work
let x = 5;
x = 3;
Works
let mut x = 5;
x = 3;



Static Typing

All variables must have one type
let x: i32 = 77;

But with type inference
let x = 77;



Rust’s Core Principle

Aliasing XOR Mutation



Ownership

Ownership rules
I Each value in Rust has a variable that’s called its owner
I There can only be one owner at a time
I When the owner goes out of scope, the value will be dropped

fn main() {
let x = 1;
{

let y = 5;
println!("x:{}, y:{}", x, y);

}
// Doesn't compile!!!!
println!("x:{}, y:{}", x, y);

}



Another Example

fn hello(name: String) {
println!("Hello {}!", name);
// name is destroyed here

}

fn main() {
let name = String::from("RIT LUG");
hello(name);
// Doesn't compile because name has been freed
println!("Goodbye {}", name);

}



References and Borrowing

We can lend out ownership of a value with a reference

fn hello(name: &str) {
println!("Hello {}!", name);

}

fn main() {
let name = "RIT LUG";
hello(&name);
println!("Goodbye {}", name);

}



Immutable vs Mutable References

Immutable reference
// Doesn't compile
fn inc(x: &i32) {

x += 1;
}

Mutable reference
fn inc(x: &mut i32) {

x += 1;
}
fn main() {

let mut x = 1;
inc(&mut x);

}



Immutable vs Mutable References cont.

Aliasing or Mutability

let mut v1 = 3;
let r1 = &v1;
let r2 = &v1;

// Doesn't compile
let mut v2 = 4;
let r1 = &mut v2;
let r2 = &mut v2;

Actually this does compile because Rust is smart, but it wouldn’t if
you tried to actually use both mutable references



Rust Prevents Many Classes of Memory Errors

I Use after free
I Null pointer dereference
I Using uninitialized memory
I Double free
I Buffer overflow
I Data race
I Many concurrency/muti-threading bugs

I Rust also enforces memory safety across threads, which most
GCs don’t

I Type errors

If it compiles it probably worksTM



Rust is Fast

I Rust’s speed is on par with C and C++



Cargo

Rust has a built tool/package manager called cargo that’s very good

I Makes it very easy to install libraries
I There’s a single blessed PM that everyone uses unlike Python
I Run cargo build and it just worksTM



Use Cases

I Command line tools
I Operating systems
I Network services
I Web Apps
I Webassembly
I Embedded



Companies Using Rust in Production

I Mozilla
I Parts of Firefox

I Facebook
I Dropbox

I Storage backend
I Cloudflare
I Discord

I Parts of backend
I NPM
I Yelp
I Tilde



The Down Sides

Rust sounds great. . . but what’s the catch?



The Down Sides

I The compiler is slow
I Medium sized Rust programs can take several minutes to

compile
I Many Rust programmes have a lot of dependencies

I Making install and publishing libraries has downsides
I The NPM problem

I Hard to learn
I Rust is pretty different to most modern langs

I Not a lot of jobs, especially entry level
I Many features still in development (async/await)

I Leads to a lot of ecosystem churn
I No LTS compiler releases

I Makes packaging Rust programs for LTS Linux distros harder
I Only one real compiler implementation
I Doesn’t support as many CPU architectures and OSes as C



The Down Sides

All of the problems are being worked on but for now, this is how it is



The End

Questions?



Other Stuff

I These slides are licensed under the CC-BY-SA license
I Source code available at git.sr.ht/~zethra/rust_presentation

https://creativecommons.org/licenses/by-sa/4.0/
https://git.sr.ht/~zethra/rust_presentation

