
Rust Lang

Tyler Murphy

Rust Book

https://doc.rust-lang.org/book

https://doc.rust-lang.org/book

What Is Rust?

Systems Language

Performant

Memory Safety

Fearless Concurrency

Memory Safety and Concurrency

is Hard

With Normal Programs

Segmentation fault (core dumped)

Undesired behavior

Instability

Rust Superpowers

R ich Errors

Borrow Checker

Fearless Concurrency

No NULL

Macros

Tests

Rich Errors

No Errors (Javascript)

Bad Errors (Java)

Rich Errors (Rust)

Rust Tells You What To Do

Borrow Checker

()

Memory Management

No Garbage Collection

No Pointers

Variable Ownership

Variables are immutable (by default)

Variables can only be owned by one thing

Variables are dropped as soon as their ownership

ends

Source

Compiled

Source

Compiled

Source

Compiled

Variables can only be owned once

use of moved value: opinion

Borrow a value

Move a value

Rust Ensures Memory Safety At

Compile Time

No Dangling References

No Memory Leaks

No Concurrency Errors

More Efficient Memory Usage

Stack vs Heap

Everything is put on to the stack (by default)

Heap allocations are done by Box::new()

Fearless Concurrency

()

Rust Enforces Thread Safe Code

No Mutable Static Variables

Cross Thread Variables Must Be Locked

No Mutable Static Variables

Static variables can be access from anywhere

Multiple threads can access the state

Concurrency issues

Arc

Mutex

lazy_static (crate)

There is no such thing as

NULL in Rust

In other languages

Return null instead of data

Return -1 for primitives

Causes a lot of edge cases

Optional Results (C)

Optional Results (Rust)

Returning Errors (Java)

Returning Errors (Rust)

Matching Options

Matching Errors

Other ways to handle options and results

Macros

#[derive(Debug)]

Macros

Code that runs at compile time

Generate new or modify existing code

function-like macros

Generates code in place of the macro

attribute macros

Can be attached to items to generate or modify

existing syntax

derive macros

Can be attached to structs and add implementations

to them

Different "Types" of Macros

Declarative Macros

Procedural Macros

Declarative Macros

function-like

Can only generate new code

Procedural Macros

function-like, attribute, derive

Can generate or modify existing syntax

Tests

Tests are gud

Unit Testing is Built In

Doc Tests

Makes sure documentation is always up to date0

Clippy (linter)

clippy my beloved

This may seem like a lot

But its for a good reson

When you write code in rust

The code will work

Memory safe

Thread safe

Blazingly Fast

It is easy to read

Now its time for a shitpost :)

