
Paradigms Parsing Execution Memory Management Miscellanea The end!

Programming Language Theory

Tristan Miller (tjm3990@rit.edu)

March 28, 2023

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

1. Paradigms

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Procedural

Program is organized into procedures, data is passed
between and manipulated by various procedures
goto, if statements, for and while loops are used
for control flow
Mirrors the behavior of CPUs

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Procedural example (C)

int numbers[] = {5, 2, 6, 3, 4, 1};
int total = 0;
for(int i = 0; i < 6; i++) {

total += numbers[i];
}
printf("The total is: %d\n", total);

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Object-oriented

Program is structured around objects, which contain
data and code that acts on that data
Objects are instances of classes, which describe their
behavior and internal state
Inheritance allows classes to be extended to add new
capabilities
Focus on encapsulation - separating the program into
independent, self-contained parts

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Object-oriented example (Ruby)

numbers = [5, 2, 6, 3, 4, 1]
total = numbers.sum
puts "The total is: " + total.to_s

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Functional

Program is structured around functions, small pieces
of code which can be combined together
Functions can be stored and manipulated much like
ordinary data
Emphasizes immutability and purity - functions don’t
mutate their arguments or access external state

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Functional example (Haskell)

sumList [] = 0
sumList (x:xs) = x + sumList xs

main = do
let total = sumList [5, 2, 6, 3, 4, 1]
putStrLn ("The total is: " ++ show total)

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Array

Program is structured around arrays, n-dimensional
tables of numbers (vectors, matrices, etc.)
Any operation that can be applied to scalars can also
be applied to arrays

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Array example (APL)

numbers ← 5 2 6 3 4 1
'The result is:', +/numbers

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

2. Parsing

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

What is a parsing?

Code is easy to understand for humans but difficult
for computers
Parser - algorithm for converting source code to an
abstract syntax tree (AST)
Parser generators generate parsers automatically

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Grammars

A grammer describes the syntax of a language
Often written in Backus-Naur form (BNF) or EBNF

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

EBNF example

expression := term
| expression ("+" | "-") term

term := item | term ("*" | "/") item
item := number | "(" expression ")"
number := "-"? digit+
digit := "0" | "1" | "2" | "3" | "4"

| "5" | "6" | "7" | "8" | "9"

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Lexing (Tokenization)

Convert the source code to a list of tokens
Token - smallest indivisible component of a language:
literals, keywords, identifiers, operators, etc.

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Lexing example

let grass_touched = (420 + 69) * 0;

let grass_touched = (420 + 69) * 0 ;

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Parsing

Convert the list of tokens to an AST representing the
program

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Parsing example
let grass_touched = (420 + 69) * 0 ;

let =

grass_touched *

+

420 69

0

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

3. Execution

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Compiled? Interpreted?

i don’t like these words

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

AST Walking

Recursively evaluate the AST directly
Very easy to implement, but very slow (cache misses)

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Immediate bytecode compilation

Compile the AST into a more efficient bytecode form
and execute that immediately
Significant speed improvement over AST walking

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Ahead-of-time bytecode compilation

Separate compiler and bytecode interpreter (VM)
Don’t need to recompile the source every time it is
run, cross-platform binaries (in theory)

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Compilation to machine code

Compile the source directly to native machine code
Blazingly fast , but very difficult (curse you

x86) and not cross-platform

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

JIT compilation

Compile bytecode to machine code on-the-fly
VM profiles code to determine what to spend time
compiling (ex. code run in tight loops)
Best of both worlds: runs cross-platform but takes
advantage of CPU architecture when possible
Sometimes faster than ahead-of-time compilation:
VM knows more about the code then the compiler.
Witchcraft.

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

4. Memory Management

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

What is?

How can programs get access to memory?
How can programs give up access?

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Static

Persists throughout program lifetime (no need to
acquire or free)
Finite size that must be known at compile-time
Ex: static in C and Rust

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Stack-based

Variable declarations allocate memory on the stack
Freed automatically once out-of-scope
Ex: Local variables in most languages

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Manual

Memory must be allocated and freed manually
Ex: malloc and free in C

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Garbage collection

Memory allocated automatically when object is
created
Garbage collector looks for unused memory and frees
it
Ex: Python, Java, JavaScript

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Reference counting

Each object stores a reference count, freed once it
reaches 0
Ex: Python, Rc<T> in Rust

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

5. Miscellanea

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

LLVM
Portable compiler toolchain: uses a common
bytecode to compile languages to machine code

LLVM
C

Rust

C++

Haskell

x86

ARM

RISC-V

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Lambda calculus

System for expressing computations using only
function creation and application
Foundation for many functional languages

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Lambda calculus

x - variable
(λx .M) - function definition
(M N) - function application

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Lambda calculus

λx .x - identity function
(λx .x)a - identity function applied to a
(simplifies to a)

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Lambda calculus (cont’d)

LC Javascript Bird name
I = λx .x I = x => x Idiot
K = λx .λy .x K = x => (y => x) Kestrel
M = λx .xx M = x => x(x) Mockingbird

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Lambda calculus (cont’d) (cont’d)

Functions can behave like numbers (Church
numerals)
0 = λf .λx .x
1 = λf .λx .fx
2 = λf .λx .f (f x)
3 = λf .λx .f (f (f x))
succ = λn.λf .λx .f (n f x)

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Esolangs

Languages created as a proof of concept, as a joke,
or to push the boundaries of programming languages
Usually very limited; challenging (but often possible)
to write useful programs

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

B****fuck

Tape-based language: entire memory is one tape
with cells storing integers
Only eight instructions (+ - > < [] . ,)
++++++++[>++++[>++>+++>+++>+<<<<-
]>+>+>->>+[<]<-]>>.>---.+++++++..+++.>>.<-
.<.+++.------.--------.>>+.>++.

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Fractran

Programs are lists of fractions, input is a single
number
Repeatedly search the list for the first fraction f such
that n · f is an integer and update n to the new value
(1791 ,

78
85 ,

19
51 ,

23
38 ,

29
33 ,

77
29 ,

95
23 ,

77
19 ,

1
17 ,

11
13 ,

13
11 ,

15
14 ,

15
2 ,

55
1)

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

Javagony

Java, but without (most) control flow
for, if, while, do while, switch, ?: are all
illegal.
How do we do things? Function calls and
try catch.

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Paradigms Parsing Execution Memory Management Miscellanea The end!

6. The end!

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

	Paradigms
	Parsing
	Execution
	Memory Management
	Miscellanea
	The end!

