Programming Language Theory
Tristan Miller (tjm3990@rit.edu)

March 28, 2023

Tristan Miller (tjm3990@rit.edu)
Programming uage Theory

.
1. Paradigms

Tristan Miller (tjm3990@rit.edu)

Procedural

m Program is organized into procedures, data is passed
between and manipulated by various procedures

m goto, if statements, for and while loops are used
for control flow
m Mirrors the behavior of CPUs

Tristan Miller (tjm3990@rit.edu)

Programming La

Procedural example (C)

int numbers([] = {5, 2, 6, 3, 4, 1};
int total = 0;
for(int i = 0; 1 < 6; i++) {

total += numbers[i];

}
printf("The total is: %d\n", total);

Tristan Miller (tjm3990@rit.edu)

Object-oriented

m Program is structured around objects, which contain
data and code that acts on that data

m Objects are instances of classes, which describe their
behavior and internal state

m Inheritance allows classes to be extended to add new
capabilities

m Focus on encapsulation - separating the program into
independent, self-contained parts

Tristan Miller (tjm3990@rit.edu)

Object-oriented example (Ruby)

numbers = [5, 2, 6, 3, 4, 1]
total = numbers.sum
puts "The total is: " + total.to_s

Tristan Miller (tjm3990@rit.edu)

Functional

m Program is structured around functions, small pieces
of code which can be combined together

m Functions can be stored and manipulated much like
ordinary data

m Emphasizes immutability and purity - functions don't
mutate their arguments or access external state

Tristan Miller (tjm3990@rit.edu)

Programming Language Theory

Functional example (Haskell)

sumList [] = 0
sumList (x:xs) = x + sumList xs

main = do
let total = sumlList [5, 2, 6, 3, 4, 1]
putStrLn ("The total is: " ++ show total)

Tristan Miller (tjm3990@rit.edu)

Array

m Program is structured around arrays, n-dimensional
tables of numbers (vectors, matrices, etc.)

m Any operation that can be applied to scalars can also
be applied to arrays

Tristan Miller (tjm3990@rit.edu)

Programming La

Array example (APL)

numbers « 5 2 6 3 4 1
'"The result is:', +/numbers

Tristan Miller (tjm3990@rit.edu)

.
2. Parsing

Tristan Miller (tjm3990@rit.edu)

What is a parsing?

m Code is easy to understand for humans but difficult
for computers

m Parser - algorithm for converting source code to an
abstract syntax tree (AST)

m Parser generators generate parsers automatically

Tristan Miller (tjm3990@rit.edu)

Programming La Theory

Grammars

m A grammer describes the syntax of a language
m Often written in Backus-Naur form (BNF) or EBNF

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

EBNF example

expression := term
| expression ("+" ["-") term
term := item | term ("x" | "/") item
item := number | "(" expression ")"
number := "-"7 digit+
dlglt .= Q" | nqn | non | ngn I ngm
| ||5|| | ||6|| | u7|| | ||8|| | ||9n

Tristan Miller (tjm3990@rit.edu)

Lexing (Tokenization)

m Convert the source code to a list of tokens

m Token - smallest indivisible component of a language:
literals, keywords, identifiers, operators, etc.

Tristan Miller (tjm3990@rit.edu)

Programming La Theory

Lexing example

let grass_touched = (420 + 69) * 0;

b

’let\grass_touched\=\(\420\+\69\)*\0

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory

Parsing

m Convert the list of tokens to an AST representing the
program

Tristan Miller (tjm3990@rit.edu)

Programming g

Parsing example

’1et\grass_touched\=\(\420\+\69\)*\0 ;
let =
_—
grass_touched *
RN
+ 0
/N
420 69

Tristan Miller (tjm3990@rit.edu)
Programming uage Theory

-
3. Execution

Tristan Miller (tjm3990@rit.edu)

Compiled? Interpreted?

m i don't like these words

Tristan Miller (tjm3990@rit.edu)

AST Walking

m Recursively evaluate the AST directly
m Very easy to implement, but very slow (cache misses)

Tristan Miller (tjm3990@rit.edu)

Programming Language Theory

Immediate bytecode compilation

m Compile the AST into a more efficient bytecode form
and execute that immediately

m Significant speed improvement over AST walking

Tristan Miller (tjm3990@rit.edu)

Ahead-of-time bytecode compilation

m Separate compiler and bytecode interpreter (VM)

m Don't need to recompile the source every time it is
run, cross-platform binaries (in theory)

Tristan Miller (tjm3990@rit.edu)

Compilation to machine code

m Compile the source directly to native machine code

m 4’ Blazingly fast %, but very difficult (curse you
x86) and not cross-platform

Tristan Miller (tjm3990@rit.edu)

JIT compilation

m Compile bytecode to machine code on-the-fly

m VM profiles code to determine what to spend time
compiling (ex. code run in tight loops)

m Best of both worlds: runs cross-platform but takes
advantage of CPU architecture when possible

m Sometimes faster than ahead-of-time compilation:
VM knows more about the code then the compiler.

m Witchcraft.

Tristan Miller (tjm3990@rit.edu)

.
4. Memory Management

Tristan Miller (tjm3990@rit.edu)

amming Language Theory

What is?

m How can programs get access to memory?
m How can programs give up access?

Tristan Miller (tjm3990@rit.edu)

Programming

Static

m Persists throughout program lifetime (no need to
acquire or free)

m Finite size that must be known at compile-time
m Ex: static in C and Rust

Tristan Miller (tjm3990@rit.edu)

Programming La

Stack-based

m Variable declarations allocate memory on the stack
m Freed automatically once out-of-scope
m Ex: Local variables in most languages

Tristan Miller (tjm3990@rit.edu)

Programming Language Theory

Manual

m Memory must be allocated and freed manually
m Ex: malloc and free in C

Tristan Miller (tjm3990@rit.edu)

Programming g

Garbage collection

m Memory allocated automatically when object is
created

m Garbage collector looks for unused memory and frees
it

m Ex: Python, Java, JavaScript

Tristan Miller (tjm3990@rit.edu)

Programming Langu

Reference counting

m Each object stores a reference count, freed once it
reaches 0

m Ex: Python, Rc<T> in Rust

Tristan Miller (tjm3990@rit.edu)

Programming Language Theory

e
5. Miscellanea

Tristan Miller (tjm3990@rit.edu)

amming Lang

LLVM

m Portable compiler toolchain: uses a common
bytecode to compile languages to machine code

C++
ARM
C
x86
Rust
RISC-V
Haskell

Tristan Miller (tjm3990@rit.edu)

Programming La Theory

Lambda calculus

m System for expressing computations using only
function creation and application

m Foundation for many functional languages

Tristan Miller (tjm3990@rit.edu)

Programming Language Theory

Lambda calculus

m X - variable
m (Ax.M) - function definition
m

(M N) - function application

Tristan Miller (tjm3990@rit.edu)

Lambda calculus

®m A\x.x - identity function
m (\x.x)a - identity function applied to a
m (simplifies to a)

Tristan Miller (tjm3990@rit.edu)
Programming age Theory

Lambda calculus (cont'd)

LC | Javascript | Bird name

I = Ax.x I =x=>x Idiot
K=MAyx|K=x => (y => x) | Kestrel
M=MXxxx |M=x=> x(x) Mockingbird

Tristan Miller (tjm3990@rit.edu)
Programming uage Theory

Lambda calculus (cont'd) (cont'd)

m Functions can behave like numbers (Church
numerals)

B 0= M. Axx

m 1l =M x.fx

m 2= MMAIx.f(f x)

m 3= M. Ax.f(f(f x))

m succ = AnAf.Ax.f(n f x)

Tristan Miller (tjm3990@rit.edu)

Esolangs

m Languages created as a proof of concept, as a joke,
or to push the boundaries of programming languages

m Usually very limited; challenging (but often possible)
to write useful programs

Tristan Miller (tjm3990@rit.edu)

Programming Language Theory

B****fuck

m Tape-based language: entire memory is one tape
with cells storing integers

m Only eight instructions (+ - > < [1 . ,)

B+ttt D+ DO > > H<KLKLKL -
1>+>4>-5>+[<]<=]>> . >——= +++++++ ., +++ D> <-
R Lo D>+ >+,

Tristan Miller (tjm3990@rit.edu)

Programming Language Theory

Fractran

m Programs are lists of fractions, input is a single
number

m Repeatedly search the list for the first fraction f such
that n- f is an integer and update n to the new value
.(HEQ%@Z%ELHE&E@)

Tristan Miller (tjm3990@rit.edu)

Programming Langu

Javagony

m Java, but without (most) control flow

m for, if, while, do while, switch, ?: are all
illegal.

m How do we do things? Function calls and
try catch.

Tristan Miller (tjm3990@rit. edu)

Programming Lang

6. The end!

Tristan Miller (tjm3990@rit.edu)

	Paradigms
	Parsing
	Execution
	Memory Management
	Miscellanea
	The end!

