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Procedural

Program is organized into procedures, data is passed
between and manipulated by various procedures
goto, if statements, for and while loops are used
for control flow
Mirrors the behavior of CPUs
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Procedural example (C)

int numbers[] = {5, 2, 6, 3, 4, 1};
int total = 0;
for(int i = 0; i < 6; i++) {

total += numbers[i];
}
printf("The total is: %d\n", total);
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Object-oriented

Program is structured around objects, which contain
data and code that acts on that data
Objects are instances of classes, which describe their
behavior and internal state
Inheritance allows classes to be extended to add new
capabilities
Focus on encapsulation - separating the program into
independent, self-contained parts
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Object-oriented example (Ruby)

numbers = [5, 2, 6, 3, 4, 1]
total = numbers.sum
puts "The total is: " + total.to_s
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Functional

Program is structured around functions, small pieces
of code which can be combined together
Functions can be stored and manipulated much like
ordinary data
Emphasizes immutability and purity - functions don’t
mutate their arguments or access external state
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Functional example (Haskell)

sumList [] = 0
sumList (x:xs) = x + sumList xs

main = do
let total = sumList [5, 2, 6, 3, 4, 1]
putStrLn ("The total is: " ++ show total)
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Array

Program is structured around arrays, n-dimensional
tables of numbers (vectors, matrices, etc.)
Any operation that can be applied to scalars can also
be applied to arrays

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory



Paradigms Parsing Execution Memory Management Miscellanea The end!

Array example (APL)

numbers ← 5 2 6 3 4 1
'The result is:', +/numbers
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2. Parsing
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What is a parsing?

Code is easy to understand for humans but difficult
for computers
Parser - algorithm for converting source code to an
abstract syntax tree (AST)
Parser generators generate parsers automatically

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory



Paradigms Parsing Execution Memory Management Miscellanea The end!

Grammars

A grammer describes the syntax of a language
Often written in Backus-Naur form (BNF) or EBNF
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EBNF example

expression := term
| expression ("+" | "-") term

term := item | term ("*" | "/") item
item := number | "(" expression ")"
number := "-"? digit+
digit := "0" | "1" | "2" | "3" | "4"

| "5" | "6" | "7" | "8" | "9"
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Lexing (Tokenization)

Convert the source code to a list of tokens
Token - smallest indivisible component of a language:
literals, keywords, identifiers, operators, etc.
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Lexing example

let grass_touched = (420 + 69) * 0;

let grass_touched = ( 420 + 69 ) * 0 ;
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Parsing

Convert the list of tokens to an AST representing the
program

Tristan Miller (tjm3990@rit.edu)
Programming Language Theory



Paradigms Parsing Execution Memory Management Miscellanea The end!

Parsing example
let grass_touched = ( 420 + 69 ) * 0 ;

let =

grass_touched *

+

420 69

0
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3. Execution
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Compiled? Interpreted?

i don’t like these words
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AST Walking

Recursively evaluate the AST directly
Very easy to implement, but very slow (cache misses)
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Immediate bytecode compilation

Compile the AST into a more efficient bytecode form
and execute that immediately
Significant speed improvement over AST walking
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Ahead-of-time bytecode compilation

Separate compiler and bytecode interpreter (VM)
Don’t need to recompile the source every time it is
run, cross-platform binaries (in theory)
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Compilation to machine code

Compile the source directly to native machine code
Blazingly fast , but very difficult (curse you

x86) and not cross-platform
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JIT compilation

Compile bytecode to machine code on-the-fly
VM profiles code to determine what to spend time
compiling (ex. code run in tight loops)
Best of both worlds: runs cross-platform but takes
advantage of CPU architecture when possible
Sometimes faster than ahead-of-time compilation:
VM knows more about the code then the compiler.
Witchcraft.
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4. Memory Management
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What is?

How can programs get access to memory?
How can programs give up access?
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Static

Persists throughout program lifetime (no need to
acquire or free)
Finite size that must be known at compile-time
Ex: static in C and Rust
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Stack-based

Variable declarations allocate memory on the stack
Freed automatically once out-of-scope
Ex: Local variables in most languages
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Manual

Memory must be allocated and freed manually
Ex: malloc and free in C
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Garbage collection

Memory allocated automatically when object is
created
Garbage collector looks for unused memory and frees
it
Ex: Python, Java, JavaScript
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Reference counting

Each object stores a reference count, freed once it
reaches 0
Ex: Python, Rc<T> in Rust
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5. Miscellanea
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LLVM
Portable compiler toolchain: uses a common
bytecode to compile languages to machine code

LLVM
C

Rust

C++

Haskell

x86

ARM

RISC-V
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Lambda calculus

System for expressing computations using only
function creation and application
Foundation for many functional languages
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Lambda calculus

x - variable
(λx .M) - function definition
(M N) - function application
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Lambda calculus

λx .x - identity function
(λx .x)a - identity function applied to a
(simplifies to a)
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Lambda calculus (cont’d)

LC Javascript Bird name
I = λx .x I = x => x Idiot
K = λx .λy .x K = x => (y => x) Kestrel
M = λx .xx M = x => x(x) Mockingbird
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Lambda calculus (cont’d) (cont’d)

Functions can behave like numbers (Church
numerals)
0 = λf .λx .x
1 = λf .λx .fx
2 = λf .λx .f (f x)
3 = λf .λx .f (f (f x))
succ = λn.λf .λx .f (n f x)
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Esolangs

Languages created as a proof of concept, as a joke,
or to push the boundaries of programming languages
Usually very limited; challenging (but often possible)
to write useful programs
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B****fuck

Tape-based language: entire memory is one tape
with cells storing integers
Only eight instructions (+ - > < [ ] . ,)
++++++++[>++++[>++>+++>+++>+<<<<-
]>+>+>->>+[<]<-]>>.>---.+++++++..+++.>>.<-
.<.+++.------.--------.>>+.>++.
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Fractran

Programs are lists of fractions, input is a single
number
Repeatedly search the list for the first fraction f such
that n · f is an integer and update n to the new value
(1791 ,
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85 ,
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51 ,
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38 ,

29
33 ,
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29 ,

95
23 ,

77
19 ,

1
17 ,
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13 ,
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1 )
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Javagony

Java, but without (most) control flow
for, if, while, do while, switch, ?: are all
illegal.
How do we do things? Function calls and
try catch.
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6. The end!
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