XDP and some lower level Linux
networking

ritlug.com

To Preface....

e | am by no means an expert on this subject

— | found this through a Cloudflare blog post (This one in fact!)
and thought it was the perfect tool for a class | was taking

— Everything | know is through trial and error with my
experiments, if any of this is interesting to you | encourage
you to look further into this!

e | am also no guru when it comes to C in general, I'm
sure | will get corrected at some point :)

https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations/

With all of that being said... Let’s begin!

o XDP (eXpress Data Path) is a high performance data path used to
TX/RX network packets at very high speeds

— By high speeds, | mean very high speeds

It is based off eBPF (“extended berkeley packet filter”, but should be
referred to by acronym as a technology, like LLVM)

XDP was first implemented in the kernel in version 4.8, released
around October of 2016

In the simplest terms, it is a very early RX hook in the kernel that
allows a user to supply a eBPF program to decide the fate of a packet.

So, what is BPF then?

BPF is a mechanism for userspace programs to efficiently specify a filter
program to selectively receive packets

— It is also a mechanism to provide a raw interface to the data link layer (think your
NIC), allowing raw packets to be sent/received directly.

BPF is available on most Unix based systems to this day

For the most part, the Linux world refers to BPF by just its filtering
capabilities, since the Linux kernel provides other ways to access the data
link layer directly.

A popular program that uses BPF is tcpdump
— The arguments you pass tcpdump are interpreted as a BPF filter program

What if we extend it?

e Then, we would have eBPF
— To condense about 10 years of history, here’s what this

L eBPF

According to Wikipedia

e At the lowest level, [eBPF] introduced the use of 10
64-bit registers in lieu of 2 32-bit long registers,
different jump semantics, a call instruction with

register passing conventions, “new instructions”,
and a different encoding

Let’s make it faster

e In April of 2011, a JIT compiler for cBPF got merged in-kernel

e In July of 2016, eBPF gained the ability to be attached to a
network driver’s core receive path, also known as XDP.

e A new socket family was added to Linux in release 4.18 named
AF_XDP

— This is a raw socket optimized for high performance and allows zero-
copy between kernel and userspace. Since you can both send and
receive, you can implement high speed userspace network
applications.

Let’s make it more extensible

e Not necessarily a part of XDP, but still cool. We have
this great filtering framework, why limit it to just
networking?

— That’s right, you can use eBPF programs to filter syscalls

— This ability is used mostly by seccomp, which is used by
Android, QEMU, OpenSSH, Flatpak, Firejail

] systemd

Anyways, what exactly makes XDP so
special?
e The fact that it comes so early in the packet processing
pipeline.
e In fact, it comes so early that processing occurs before the
network stack performs any needed memory allocations

— The eBPF program runs right after the interrupt processing is
complete.

— In some cases, the NIC itself will execute the XDP code if
supported, completely offloading that burden from the main CPU.

So, being that early, how fast is XDP?

e Very fast
— Very, very fast.

e According to tests done |n this repo, we are looking at the
following statistics:

— Tests were performed on an Intel Xeon E5-1650 v4 @ 3.6GHz (a
CPU released in 2016)

— Packets were able to be dropped at a rate of 26Mpps per core
— Packets were able to be redirected at a rate of 8.5Mpps per core

https://github.com/tohojo/xdp-paper/blob/master/benchmarks/bench01_baseline.org#initial-data-from-jespers-runs

Wow

e Yeah.. it’s fast. It’s no wonder why big companies
like Amazon, Google, Facebook, and Cloudflare use
It for various tasks

— For example, Cloudflare re-implements iptables rules
using XDP to perform high performance DDOS
protection

— Facebook’s Laver 4 load balancer uses XDP to route
packets

https://github.com/facebookincubator/katran

So, what's the catch?

e At a very high level, you trade extensibility for speed.

e First off, it can only perform these operations:
— PASS — pass the packet to the network stack
— DROP = silently drop the packet
— ABORTED — drop the packet with a trace point exception
— TX = bounce the packet back to the receiving NIC

— REDIRECT — redirect the packet to another NIC or userspace
AF_XDP socket

e Also, most changes require a program to be re-compiled
(usually using clang)

— Some changes can be done dynamically, which | will get to in a
moment

e Due to the privileged nature of this code, all eBPF programs
must run through a pre-verifier test within the kernel

— This step ensures that there are no out of bound memory
accesses (memory safety!), infinite or otherwise non-returning

loops or functions, anything that may crash or hang, or contain
any global variables.

— |t’s like C, but a lot safer!

Alright, I'm sold, how do | make a XDP
Program?

 First, make sure you have the following dependencies
installed:

— Linux Headers
— Libbpf headers
— Libxdp headers
- Clang
e Now, all we need is a C file
— Let’s make a simple program that drops everything

SEC(“xdpentry”)

int xdp_dropper(struct xdp_mp *ctx) {
XDP_DROP:
}

char _license[] SEC(“license”) = “GPL";

What makes it safe?

e It doesn’t allow any memory accesses that may be
out of bounds

— which means you will be seeing this code a whole lot

if (icmph + 1 > data_end) {

return XDP_PASS;
h

How can you communicate?

e So, the thing is, the program is run fresh on every received packet,
there is no “continuous execution”, or shared state between packets

e Which begs the question, how do | share state between packets and
invocations of the program?

— Plus, how do | communicate with userspace?

e The answer: BPF maps (and other data structures)

— BPF maps are a data structure that allows you to set and get values by
keys from both userspace and kernel space, meaning data and state can
be shared (to a degree)

Enough slides, let’s see an example!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

