

XDP and some lower level Linux
networking

To Preface….
● I am by no means an expert on this subject

– I found this through a Cloudflare blog post (This one in fact!)
and thought it was the perfect tool for a class I was taking

– Everything I know is through trial and error with my
experiments, if any of this is interesting to you I encourage
you to look further into this!

● I am also no guru when it comes to C in general, I’m
sure I will get corrected at some point :)

https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations/

With all of that being said… Let’s begin!
● XDP (eXpress Data Path) is a high performance data path used to

TX/RX network packets at very high speeds
– By high speeds, I mean very high speeds

● It is based off eBPF (“extended berkeley packet filter”, but should be
referred to by acronym as a technology, like LLVM)

● XDP was first implemented in the kernel in version 4.8, released
around October of 2016

● In the simplest terms, it is a very early RX hook in the kernel that
allows a user to supply a eBPF program to decide the fate of a packet.

So, what is BPF then?
● BPF is a mechanism for userspace programs to efficiently specify a filter

program to selectively receive packets
– It is also a mechanism to provide a raw interface to the data link layer (think your

NIC), allowing raw packets to be sent/received directly.
● BPF is available on most Unix based systems to this day
● For the most part, the Linux world refers to BPF by just its filtering

capabilities, since the Linux kernel provides other ways to access the data
link layer directly.

● A popular program that uses BPF is tcpdump
– The arguments you pass tcpdump are interpreted as a BPF filter program

What if we extend it?
● Then, we would have eBPF

– To condense about 10 years of history, here’s what this
did.

According to Wikipedia
● At the lowest level, [eBPF] introduced the use of 10

64-bit registers in lieu of 2 32-bit long registers,
different jump semantics, a call instruction with
register passing conventions, “new instructions”,
and a different encoding

Let’s make it faster
● In April of 2011, a JIT compiler for cBPF got merged in-kernel
● In July of 2016, eBPF gained the ability to be attached to a

network driver’s core receive path, also known as XDP.
● A new socket family was added to Linux in release 4.18 named

AF_XDP
– This is a raw socket optimized for high performance and allows zero-

copy between kernel and userspace. Since you can both send and
receive, you can implement high speed userspace network
applications.

Let’s make it more extensible
● Not necessarily a part of XDP, but still cool. We have

this great filtering framework, why limit it to just
networking?
– That’s right, you can use eBPF programs to filter syscalls
– This ability is used mostly by seccomp, which is used by

Android, QEMU, OpenSSH, Flatpak, Firejail

Anyways, what exactly makes XDP so
special?

● The fact that it comes so early in the packet processing
pipeline.

● In fact, it comes so early that processing occurs before the
network stack performs any needed memory allocations
– The eBPF program runs right after the interrupt processing is

complete.
– In some cases, the NIC itself will execute the XDP code if

supported, completely offloading that burden from the main CPU.

So, being that early, how fast is XDP?
● Very fast

– Very, very fast.
● According to tests done in this repo, we are looking at the

following statistics:
– Tests were performed on an Intel Xeon E5-1650 v4 @ 3.6GHz (a

CPU released in 2016)
– Packets were able to be dropped at a rate of 26Mpps per core
– Packets were able to be redirected at a rate of 8.5Mpps per core

https://github.com/tohojo/xdp-paper/blob/master/benchmarks/bench01_baseline.org#initial-data-from-jespers-runs

Wow
● Yeah.. it’s fast. It’s no wonder why big companies

like Amazon, Google, Facebook, and Cloudflare use
it for various tasks
– For example, Cloudflare re-implements iptables rules

using XDP to perform high performance DDOS
protection

– Facebook’s Layer 4 load balancer uses XDP to route
packets

https://github.com/facebookincubator/katran

So, what’s the catch?
● At a very high level, you trade extensibility for speed.
● First off, it can only perform these operations:

– PASS → pass the packet to the network stack
– DROP → silently drop the packet
– ABORTED → drop the packet with a trace point exception
– TX → bounce the packet back to the receiving NIC
– REDIRECT → redirect the packet to another NIC or userspace

AF_XDP socket

● Also, most changes require a program to be re-compiled
(usually using clang)
– Some changes can be done dynamically, which I will get to in a

moment
● Due to the privileged nature of this code, all eBPF programs

must run through a pre-verifier test within the kernel
– This step ensures that there are no out of bound memory

accesses (memory safety!), infinite or otherwise non-returning
loops or functions, anything that may crash or hang, or contain
any global variables.

– It’s like C, but a lot safer!

Alright, I’m sold, how do I make a XDP
Program?

● First, make sure you have the following dependencies
installed:
– Linux Headers
– Libbpf headers
– Libxdp headers
– Clang

● Now, all we need is a C file
– Let’s make a simple program that drops everything

#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>

SEC(“xdpentry”)
int xdp_dropper(struct xdp_mp *ctx) {

return XDP_DROP;
}

char _license[] SEC(“license”) = “GPL”;

What makes it safe?
● It doesn’t allow any memory accesses that may be

out of bounds
– …. which means you will be seeing this code a whole lot

if (icmph + 1 > data_end) {
// More bounds checking
return XDP_PASS;

}

How can you communicate?
● So, the thing is, the program is run fresh on every received packet,

there is no “continuous execution”, or shared state between packets
● Which begs the question, how do I share state between packets and

invocations of the program?
– Plus, how do I communicate with userspace?

● The answer: BPF maps (and other data structures)
– BPF maps are a data structure that allows you to set and get values by

keys from both userspace and kernel space, meaning data and state can
be shared (to a degree)

Enough slides, let’s see an example!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

